

Jordi José

Dept. Física i Enginyeria Nuclear, Univ. Politècnica de Catalunya (UPC) & Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona

Multidimensional modeling of nova outbursts Introduction || The Roadmap for Multidimensional Models || Presolar Nova Grains

Introduction. Theory & Early Models Schatzmann (1951): outburst triggered by nuclear reactions [³He]

REMARQUES SUR LE PHÉNOMÈNE DE NOVA (IV)

L'onde de détonation due à l'isotope ³He

par Evry Schatzman

Ann. d'Astroph. (1951) 14, 294

1969) 156, 569

J. José

See also Cameron (1959), Gurevitch & Lebedinsky (1957), Giannone & Weigert (1967), Rose (1968), Starrfield (1971a,b), Prialnik, Shara & Shaviv (1978), and several others!

Starrfield's talk, this Conference

Department of Astronomy, Indiana University, and Goddard Space Flight Center National Aeronautics and Space Administration, Greenbelt, Maryland Received June 26, 1968; revised September 27, 1968

ABSTRACT

The dynamics of a nova outburst are studied by means of a time-dependent hydrodynamics computer program which includes transport of energy by radiation and convection. Two distinct types of ejections which could give rise to novae are identified. The "flash" nova (e.g., T CrB) has a very rapidly rising and falling light curve and a rapidly decreasing velocity curve. A strong shock wave which imparts a velocity greater than the escape velocity to the outer layers of the star will produce this behavior. A less rapidly rising and falling light curve and a nearly constant velocity are characteristic of the "ordinary" nova (e.g., GK Per). These features will result when the stellar material is forced outward by a pressure front which is not a shock wave. The pre-maximum halt, which is characteristic of the latter type of nova, results from the temperature dependence of the opacity of neutral hydrogen.

Composition of the ejecta

J. José

* $Z_{\odot} \rightarrow Z \sim 0.50$ (up to 0.86, for V1370 Aql 1982)? Limited T_{peak} CNO-breakout unlikely! \rightarrow Mixing at the core-envelope interface

The mixing mechanism: the Holy Grail of nova modeling

* **Diffusion Induced Convection** [Prialnik & Kovetz 1984; Kovetz & Prialnik 1985; Iben, Fujimoto & MacDonald 1991, 1992; Fujimoto & Iben 1992]

* Shear mixing [Durisen 1977; Kippenhahn & Thomas 1978;
MacDonald 1983; Livio & Truran 1987; Kutter & Sparks 1987; Sparks
& Kutter 1987]

* Convective Oveshoot Induced Flame Propagation [Woosley 1986]

* Convection Induced Shear Mixing [Kutter & Sparks 1989]

Multidimensional modeling of nova outbursts Introduction || The Roadmap for Multidimensional Models || Presolar Nova Grains

* **Multidimensional processes** [Glasner & Livne 1995; Glasner, Livne & Truran 1997, 2005, 2007, 2012; Rosner et al. 2002; Alexakis et al. 2004, Casanova et al. 2010, 2011a,b]

Multidimensional modeling of nova outbursts Introduction || The Residual for Multidimensional Models || Presolar Nova Grains

The Roadmap for Multidimensional Models

Shara (1982), ApJ

Semianalytic model of **localized**, *volcanic-like* TNRs

J. José

Heat transport is **too inefficient** for a flame to spread a localized TNR to the rest of the WD surface

But! The study ignored the major role played by **convection**

Fryxell & Woosley (1982), ApJ

Study based on dimensional analysis and flame theory: propagated by **small-scale turbulence**

J. José

$$v_{def} \sim (h_p \; v_{conv} \; / \; \tau_{burn} \;)^{1/2} \sim 10^4 \; cm \; s^{-1}$$

Halfway propagation across the stellar surface in \sim **1.3 days**

Shankar, Fryxell & Arnett (1992), ApJ; Shankar & Arnett (1994), ApJ

An accreting 1.25 M_0 WD (1-D) \longrightarrow mapped into a 2-D domain (polar grid 25×60 km²). 2-D simulation performed with PROMETHEUS (an Eulerian code). **12 isotope network**

J. José

Computed time: 1 sec! T perturbations cause **Rayleigh-Taylor** instabilities. Rapid rise and expansion, τ_{dyn} \longrightarrow halts the lateral spread of the TNR, **favoring localized TNRs.**

But!, very extreme (rare) conditions assumed.

Multidimensional modeling of nova outbursts Introduction || The Residual for Multidimensional Models || Presolar Nova Grains

Glasner & Livne (1995), ApJ; Glasner, Livne & Truran (1997), ApJ

An accreting 1.0 M_o CO WD (1-D) — mapped into a 2-D domain at T=10⁸ K. 2-D simulation performed with *VULCAN* (ALE code). Spherical/polar coordinates, with reflecting boundary conditions. Slice of $0.1\pi^{rad}$, resolution 5×5 km², 12 isotope network

Multidimensional modeling of nova Introduction || The Readmap for Multidimensional Models || P

Glasner & Livne (1995), ApJ; Glasner, L

An accreting 1.0 M_o CO WD (1-D domain at T=10⁸ K. 2-D simulation code). Spherical/polar coordination conditions. Slice of $0.1\pi^{rad}$, resoluti

Multidimensional modeling of nova outbursts Introduction || The Readmap for Multidimensional Models || Presolar Nova Grains

Differences with 1-D simulations:

J. José

* TNR initiates as a myriad of irregular, localized eruptions * Core/envelope interface is now convectively unstable mechanism for mixing? (~ convective overshoot, Woosley 1986) * Large convective eddies (h ~ $2/3 \Delta z_{env}$)

Good agreement with 1-D simulations!

J. José

* Role of β^+ -unstable nuclei ^{14, 15}O, ¹⁷F (¹³N) in the ejection process * Significant presence of ^{14, 15}N, ¹⁷O (¹³C) expected in the ejecta

Kelvin-Helmholtz instabilities

Kercek, Hillebrandt & Truran (1998, 1999), A&A

Same initial model than GLT97 \longrightarrow mapped into a 2-D domain at T=10⁸ K. 2-D (3-D) simulations performed with PROMETHEUS, assuming a **Cartesian**, plane-parallel geometry, with periodic boundary conditions

J. José

Computational domains: 1800×1000 km² (2-D) 1800×1800×1000 km³ (3-D) **Resolution:** 5×5 km², 1×1 km² (2-D); 8×8×8 km³ (3-D)

12 isotope network

Multidimensional modeling of nova outbursts Introduction || The Readmap for Multidimensional Models || Presolar Nova Grains

Introduction || The map for Multidimensional Models || Presolar Nova Grains

TIME :

400.0 sec cm/s

200 ki

Vel

3.3E+04

4.5E+07

Very **limited dredge-up** and mixing episodes **—** fainter events!

7.6E+07

3.8E+07

TIME :

Vel

200.0 sec cm/s

7.0E+04

9.0E+07

200

* 2-D: Qualitatively, similar results than in Glasner, Livne, & Truran (1997), but somewhat less violent outbursts (longer τ_{TNR} , lower T_{peak} & v_{ejec}) caused by major differences in the convective flow patterns:

J. José

few, large convective eddies many, small stable eddies (Glasner et al. 1997) (Kercek et al. 1998)

* **3-D:** Flow patterns are **dramatically different** from those in 2-D. Mixing by turbulent motions on very small scales: **no nova** (i.e., no mass-ejection phase expected) is found!, as a result of a very limited dredge-up and mixing episodes

map for Metudimensional Models || Presolar Nova Grains Introduction || The

Multidimensional modeling of nova outbursts Introduction || The Readinap for Multidimensional Models || Presolar Nova Grains

I meant *messy*, not *Messi*!

* Other multidimensional studies (Rosner et al. 2001; Alexakis et al. 2004a,b) focused on the role of **shear instabilities** in the stratified fluids that form nova envelopes.

J. José

To account for significant mixing, a very high shear (with a specific velocity profile) had to be assumed.

Mixing from the **resonant interaction** between large-scale shear flows in the accreted envelope and gravity waves at the core-envelope interface.

Multidimensional modeling of nova outbursts Introduction || The Resemant for Multidimensional Models || Presolar Nova Grains

Glasner, Livne & Truran (2005), ApJ

Sensitivity of multidimensional nova calculations to the **outer boundary conditions**

Multidimensional modeling of nova outbursts Introduction || The Resemble for Multidimensional Models || Presolar Nova Grains

Solutions obtained from Lagrangian simulations, where the envelope is allowed to expand and mass is being conserved, are **consistent with spherically symmetric solutions**. In Eulerian schemes, which utilize an outer boundary condition of free outflow, the outburst can be artificially quenched

J. José

Fig. 3.—Color map of the thermonuclear energy production rate at t = 100 s for the pure Eulerian case (*right*) and the ALE Lagrangian scheme (*left*). The spatial coordinate is in units of 100 Km. The energy production rate is in ergs $g^{-1} s^{-1}$. The rate scale is different in the two cases (see scale to the right of each model; see text).

Multidimensional modeling of nova outbursts Introduction || The Readinap for Multidimensional Models || Presolar Nova Grains

Jordi Casanova now post-doc at UNCS, North Carolina

Multidimensional modeling of nova outbursts Introduction || The Residual for Multidimensional Models || Presolar Nova Grains

A&A 513, L5 (2010)

DOI: 10.1051/0004-6361/201014178 © ESO 2010

J. José

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

Letter to the Editor

On mixing at the core-envelope interface during classical nova outbursts

J. Casanova¹, J. José¹, E. García-Berro², A. Calder³, and S. N. Shore⁴

Multidimensional modeling of nova outbursts Introduction || The Readmap for Multidimensional Models || Presolar Nova Grains

WARNING! Table coming...

Multidimensional modeling of nova outbursts Introduction || The Residual for Multidimensional Models || Presolar Nova Grains

A&A 527, A5 (2011) DOI: 10.1051/0004-6361/201015895 © ESO 2011

J. José

Mixing in classical novae: a 2-D sensitivity study*

J. Casanova^{1,2}, J. José^{1,2}, E. García-Berro^{3,2}, A. Calder⁴, and S. N. Shore⁵

Model	H (km)	$\begin{array}{c} R_x \times R_y \\ (\mathrm{km}) \end{array}$	δT	$\frac{\delta t}{(s)}$	Resolution (km)	Computational Domain (km)	t _{KH} (s)	t_Y (s)	Ζ
А	0	1×1	5%	10^{-10}	1.56×1.56	800×800	155	496	0.224
В	0	1×1	5%	10	1.56×1.56	800×800	28	347	0.212
С	0	1×1	0.5%	10^{-10}	1.56×1.56	800×800	155	493	0.209
D	5	1×1	5%	10^{-10}	1.56×1.56	800×800	154	496	0.235
Е	5	5×5	5%	10^{-10}	1.56×1.56	800×800	156	486	0.209
F	0	2×1	5%	10^{-10}	1.56×1.56	1600×800	151	493	0.206
G	0	1×1.25	5%	10^{-10}	1.56×1.56	800×1000	156	526	0.291
Н	0	1×1	5%	10^{-10}	1×1	800×800	162	584	0.201
Ι	0	1×1	5%	10^{-10}	0.39×0.39	800×800	268	893	0.205

Introduction || The Resonance for Metudimensional Models || Presolar Nova Grains

Results are **independent** of the specific choice of the **initial perturbation** (duration, strength, location, and size), **the resolution adopted**, or the **size of the computational domain**

Multidimensional modeling of nova outbursts Introduction || The Residuate for Multidimensional Models || Presolar Nova Grains

490 | NATURE | VOL 478 | 27 OCTOBER 2011

3-D Hydro Simulations with the FLASH Code

Casanova, JJ, García-Berro, Shore & Calder (2011), Nature

3-D Hydro Simulations with the FLASH Code

MareNostrum II (BSC, 2006), 94.21 Tflops/s, 10,240 processors

MareNostrum III (BSC, Jan. 2013), >1 Petaflop/s, 48,000 processors [6,000 Intel SandyBridge chips (2,6 GHz), each with 8 cores]

Introduction []

p for Muttelimensional Models || Presolar Nova Grains

For many problems in the theory of the stellar interior the speed of numerical integrations by hand is entirely sufficient. A person can usually accomplish more than twenty integration steps per day for a set of differential equations [...] Thus for a typical single integration consisting of, say, forty steps less than two days are needed. Correspondingly, if, for example, a set of models is to be determined and if these models are to be constructed of a one-parameter family starting from the surface and a one-parameter family starting from the core, and if each of these two families can be represented with sufficient accuracy by, say, six individual integrations, then the entire numerical work for this fairly typical case can be accomplished by one person in one month. However, if extensive evolutionary model sequences including a variety of physical complications are to be derived, then numerical integrations by hand may become prohibitive and the advantage of large electronic machines will be incontestable.

Martin Schwarzschild, Structure and Evolution of the Stars (1958)

Glasner, Livne & Truran (2012), MNRAS

2-D simulations for a wide range of possible compositions of the layer underlying the accreted envelope: **non-carbon cases**

J. José

Computational domain: $0.1\pi^{rad}$, as in GLT97 **Resolution:** $1.4 \times 1.4 \text{ km}^2$

15 isotope network [up to ¹⁷F]

All simulations involve a 1.147 M_0 WD, with different substrates:* CO* ONe \rightarrow pure 16 O* He [recurrent novae]* pure 24 Mg

Introduction || The Residuate for Metudimensional Models || Presolar Nova Grains

Glasner, Livne & Truran (2012), MNRAS

Multidimensional modeling of nova outbursts Introduction || The Readinap for Multidimensional Models || Presolar Nova Grains

At this stage, **multiD models** can provide the **required inputs** for state-of-the-art, 1-D simulations with large nuclear reaction networks

THE ASTROPHYSICAL JOURNAL, 762:8 (10pp), 2013 January 1 © 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/762/1/8

J. José

MESA MODELS OF CLASSICAL NOVA OUTBURSTS: THE MULTICYCLE EVOLUTION AND EFFECTS OF CONVECTIVE BOUNDARY MIXING

PAVEL A. DENISSENKOV^{1,2,3}, FALK HERWIG^{1,3,4}, LARS BILDSTEN⁵, AND BILL PAXTON⁵
 ¹ Department of Physics & Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6, Canada; pavelden@uvic.ca, fherwig@uvic.ca
 ² TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
 ³ Joint Institute for Nuclear Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA
 ⁴ Turbulence in Stellar Astrophysics Program, New Mexico Consortium, Los Alamos, NM 87544, USA
 ⁵ Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA; bildsten@kitp.ucsb.edu, paxton@kitp.ucsb.edu
 Received 2012 June 1; accepted 2012 October 18; published 2012 December 7

Denissenkov's talk, this Conference

The Resonant for Metadimensional Models || Presolar Nova Grains

THE ASTROPHYSICAL JOURNAL, 662: L103–L106, 2007 June 20 © 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Introduction ||

THE FIRST NOVA EXPLOSIONS

J. José

Jordi José

Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, E-08036 Barcelona; and Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona, Spain; jordi.jose@upc.edu

ENRIQUE GARCÍA-BERRO Departament de Física Aplicada, Universitat Politècnica de Catalunya, E-08860 Castelldefels (Barcelona); and Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona, Spain; garcia@fa.upc.edu

MARGARITA HERNANZ Facultat de Ciències, Institut de Ciències de l'Espai, Campus UAB, E-08193 Bellaterra (Barcelona); and Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona, Spain; hernanz@ieec.uab.es

AND

PILAR GIL-PONS Departament de Física Aplicada, Universitat Politècnica de Catalunya, E-08860 Castelldefels (Barcelona), Spain; pilar@fa.upc.edu Received 2007 March 20; accepted 2007 May 7; published 2007 May 29

1-D simulations with **input from multiD models** [convective transport; **Glasner et al. 1997**]

Effect on Nucleosynthesis? (⁷Li yields)

Introduction || The Roadmap for Multidimensional Models || Presolar Nova Grains

Presolar Grains and Dust

Evidence for **dust formation** (IR) accompanying nova outbursts

Gehrz et al. (1998)

THE ASTROPHYSICAL JOURNAL, 203:490–496, 1976 January 15 © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Maur	Veen	V_a	Turner of Duct Formada
Nova	rear	(km s ·)	Types of Dust Formed
FH Ser	1970	560	С
V1229 Aql	1970	575	С
V1301 Aql	1975		С
V1500 Cyg ⁺	1975	1180	
NQ Vul	1976	750	с
V4021 Sgr	1977		С
LW Ser	1978	1250	С
V1668 Cyg	1978	1300	С
V1370 Aql ^d	1982	2800	C; SiC; SiO ₂
GQ Mus	1983	600	No dust
PW Vul	1984 #1	285	С
QU Vul*	1984 #2	1 - 5000	SiO_2
OS And ^{a,e}	1986	900	C?
V1819 Cyg ⁺	1986	1000	No dust
V842 Cen	1986	1200	C; SiC; HC
V827 Her*	1987	1000	С
V4135 Sgr	1987	500	
QV Vul	1987	700	C; SiO_2 ; HC; SiC
LMC 1988 #1	1988 #1	800	C?
LMC 1988 #2	1988 #2	1500	
V2214 Oph	1988	500	
V838 Her	1991	3500	С
V1974 Cyg ¹	1992	2250	No dust
V705 Cas	1993	840	C; HC; SiO ₂
Aql 1995°	1995	1510	С

J. José

GRAINS OF ANOMALOUS ISOTOPIC COMPOSITION FROM NOVAE

DONALD D. CLAYTON AND FRED HOYLE* Department of Space Physics and Astronomy, Rice University Received 1975 April 28; revised 1975 June 26

Isotopic peculiarities: ¹³C, ¹⁴C, ¹⁸O, ²²Na, ²⁶Al, ³⁰Si

Introduction || The Roadmap for Multidimensional Models || Presolar Nova Grains

THE ASTROPHYSICAL JOURNAL, 551:1065–1072, 2001 April 20 © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SACHIKO AMARI, XIA GAO,¹ LARRY R. NITTLER,² AND ERNST ZINNER Laboratory for Space Sciences and the Physics Department, Washington University, St. Louis, MO 63130-4899; sa@howdy.wustl.edu, ekz@howdy.wustl.edu

JORDI JOSÉ³ AND MARGARITA HERNANZ Institut d'Estudis Espacials de Catalunya (IEEC/CSIC), E-08034 Barcelona, Spain; jjose@ieec.fcr.es, hernanz@ieec.fcr.es

AND

ROY S. LEWIS Enrico Fermi Institute, University of Chicago, Chicago, IL 60637-1433; r-lewis@uchicago.edu Received 2000 September 15; accepted 2000 December 18

Introduction || The Roadmap for Multidimensional Models || Presolar Nova Grain

Presolar Nova Grains: The Magnificent Seven

Grain c	composition	$^{12}C/^{13}C$	$^{14}N/^{15}N$	$\delta^{29}Si/^{28}Si$	$\delta^{30}Si/^{28}Si$	²⁶ Al/ ²⁷ Al	²⁰ Ne/ ²² Ne
AF15bB-429-3	3 SiC	9.4±0.2		28±30	1118±44		
AF15bC-126-3	3 SiC	6.8 ± 0.2	5.22 ± 0.11	-105 ± 17	237 ± 20		
KJGM4C-100-	-3 SiC	5.1 ± 0.1	19.7 ± 0.3	55 ± 5	119 ± 6	0.0114	
KJGM4C-311-	-6 SiC	$8.4{\pm}0.1$	13.7 ± 0.1	-4±5	149±6	>0.08	
KJC112	SiC	4.0 ± 0.2	6.7 ± 0.3				
KFC1a-551	С	8.5 ± 0.1	273 ± 8	$84{\pm}54$	761 ± 72		
KFB1a-161	С	3.8 ± 0.1	312 ± 43	- 133±81	37±87		< 0.01
Solar		89	272	0	0	0	14
Nova models		0.2–3 (0.1–1900 -9	50 to 1800	-1000 to 4	7000 0.01-	-0.9 0.1-29

The solar N ratio in the table is that from terrestrial air. Grains AF... are from the Acfer 094 meteorite, whereas grains KJ... and KF... are from the Murchison meteorite (see Amari et al. 2001c and Amari 2002, for details). Errors are 1σ .

J. José

Five SiC and two graphite grains, whose isotopic ratios point toward a nova origin: low ${}^{12}C/{}^{13}C$ and ${}^{14}N/{}^{15}N$ ratios, high ${}^{30}Si/{}^{28}Si$, and close-to-solar ${}^{29}Si/{}^{28}Si$. ${}^{26}Al/{}^{27}Al$ and ${}^{22}Ne/{}^{20}Ne$ ratios have been determined for some of these grains, with values compatible with nova model predictions \longrightarrow Dilution with Z_{\odot} material!

Multidimensional modeling of nova outbursts Introduction || The Roadmap for Multidimensional Models || Presolar Nova Grain

A preliminary **3-D SPH** simulation of the interaction between the nova ejecta and the stellar companion Campbell, JJ, Cabezón & García-Berro, NIC XI (2011)

J. José

PhD Thesis by J. Figueira

* Simulations of the **interaction** between the nova ejecta and the accretion disk

* Contamination of the MS star and effect on the next CN?

Multidimensional modeling of nova outbursts Introduction || The Readmap for Multidimensional Models || Presolar Nova Grains

* **3-D hydro simulations** of the **quiescent accretion** and the subsequent **explosive phase**

J. José

to to Domenty -12.5 -13.4 -14.2 -15.1 -16.0

1.2 10¹³ cm

Walder, Folini & Shore (2008), A&A

Thank you for your attention!

Multidimensional Modeling of Nova Outbursts Stella Novae: Past and Future Decades Cape Town (South Africa), February 4–8, 2013