

Rapid Dust Formation in Novae: Speed Class vs Grain Formation Timescale

Mike Bode

Astrophysics Research Institute Liverpool John Moores University, UK

Steve Williams, Matt Darnley (LJMU) Viktor Zubko (GSFC), Nye Evans (Keele) Allen Shafter (SDSU)

Cape Town, 6th February 2013

Outline

- Results from the Spitzer Survey of M31 Novae
- The Simplest Model
- More Refined Modelling
- Results and Conclusions

Spitzer Survey of M31 Novae (Shafter, Bode et al. 2011)

- 10 CNe in M31 observed with IRAC/IRS, 3-7 months after discovery, 8 detected
- Complemented by ground-based observations: optical light curve (2m LT; 0.65m Ondrejov; 0.28m Zlin); spectral type (HET)
- Dust formation detected in M31N 2006-10a; 2007-07f (+ [Nell]12.8um in 2007-11e)
- 2006-10a no silicate feature, M_d ~ 2x10⁻⁶M_{sun} assuming graphite grains

E.g. IRAC, IRS results

Spitzer Survey of M31 Novae (Shafter, Bode et al. 2011)

- 10 CNe in M31 observed with IRAC/IRS, 3-7 months after discovery, 8 detected
- Complemented by ground-based observations: optical light curve (2m LT; 0.65m Ondrejov; 0.28m Zlin); spectral type (HET)
- Dust formation detected in M31N 2006-10a; 2007-07f (+ [Nell]12.8um in 2007-11e)
- 2006-10a no silicate feature, M_d ~ 2x10⁻⁶M_{sun} assuming graphite grains

Comparison to Galactic Novae - condensation time

Time of maximum IR emission

Comparison to Galactic Novae - condensation time

Zeroth Order Model

From energy balance:

$$t_{\rm cond} = \left[\frac{L}{16\pi V_{\rm ej}^2 \sigma T_{\rm cond}^4} \frac{\langle Q_{\rm a} \rangle}{\langle Q_{\rm e} \rangle}\right]^{\frac{1}{2}} \qquad \propto L^{1/2} V_{\rm ej}^{-1}$$

then MMRD (see e.g. Warner 2008; $b_2 \sim 2.5$)

$$2.5 \log L \propto -\log t_2^{b_2} \qquad \qquad L \approx t_2^{-1}$$

and empirical relationship with ejection velocity

$$\log V_{\rm ej} = 3.57 - 0.5 \log t_2 \qquad V_{\rm ej} \propto t_2^{-0.5}$$

Thus $t_{\rm cond}$ effectively independent of t_2 - including errors in MMRD from Downes & Duerbeck (2000) $t_{\rm cond} \propto t_2^{-0.01 \pm 0.06}$.

First Order Model

- Grain nucleation and growth in outermost neutral regions
- H absorption cuts off emission incident on forming grains at Lyman limit

Again, from MMRD:

$$M_V = 2.5 \log t_2 - 11$$

with BC~0 at peak, derive L_{bol} from t_2 .

Central source continuum evolves according to

$$T_{\rm eff} = T_0 \times 10^{\Delta V/2.5}$$

(Bath & Harkness 1989; $T_0 = 8000$ K, Evans et al. 2005)

Model Optical Light Curves

- A vs t₂ (Warner 1995) and exponential decline
- Unabsorbed luminosity $L_{\rm Ly} = 4\pi^2 R^2 \int_{91.2 \text{ nm}}^{\infty} B_{\lambda}(T) d\lambda$

where *R* is radius of pseudophotosphere with $T=T_{eff}$

Resulting Effective Luminosity

 t_2 = 10, 15, 20, 30, 40, 50 days (t_2 = 10 highest luminosity)

12

Dust Model

- Nucleation centres C₈, *a* ~ 0.26nm (Evans & Rawlings 2008)
- Q_{abs} for graphite and ACH2 (Zubko et al. 1996)calculated for 0.26 < a < 5nm

For graphite $\langle Q_{\rm e} \rangle \simeq 0.15 a T_d^{1.5}, T_{\rm d} = \left[\frac{5L_{\rm bol}}{12 a \sigma^2 T_{\rm eff}^4 V_{\rm ej}^2 t^2} \int_{91.2 \text{ nm}}^{\infty} B_{\lambda}(T_{\rm eff}) Q_{\rm abs}(a, \lambda) d\lambda \right]^{0.18}$ and ACH2 $\langle Q_{\rm e} \rangle \simeq 400 a T_d^{0.46}, T_{\rm d} = \left[\frac{L_{\rm bol}}{6400 a \sigma^2 T_{\rm eff}^4 V_{\rm ej}^2 t^2} \int_{91.2 \text{ nm}}^{\infty} B_{\lambda}(T_{\rm eff}) Q_{\rm abs}(a, \lambda) d\lambda \right]^{0.22}$ Solved numerically for $T_{\rm d} = T_{\rm cond} = 1200$ K (Evans & Rawlings 2008) to give $t_{\rm cond}$ vs t_2 13

Results

14

Concluding Remarks

- There is a strong correlation of dust condensation timescale with speed class
- The 'first order' model produces surprisingly good agreement with results, despite the simplistic assumptions made
- Refinements would include more realistic spectral energy distributions as seen by nucleation centres, luminosity evolution, etc.
- NIR obs of dust in M31 novae possible with ground-based 8m-class telescopes