LSST and the future decade of optical transient surveys

Tyson

versity of California, Davis

STELLANOVAE, CAPE TOWN SOUTH AFRICA, FEBRUARY 2013

Telescope and Site

30 m diameter dome

1.2 m diameter atmospheric telescope

Control room and heat producing equipment (lower level) |

1,380 m² service and maintenance facility

Stray light and Wind Screen

350 ton telescope

Includes the facilities, and hardware to collect the light, control the survey, calibrate conditions, and support all LSST summit and base operations. **Calibration Screen**

Mirror fabrication is advanced - Private funding enabled early start of both reflective optics

- Primary-Tertiary was cast in 2008
- Fabrication completed by the early 2013
- Secondary substrate fabricated by Corning in 2009.

Camera (Actual Size) • Pixel count: 3.2 Guixels • Pixel pitch: 10 microns • Readout time: 7 sec • Dynamic range: 16 bits • Nominal exposure time: 15 seconds • Plate scale: 50.9 micronstarcsec • Facel plane temperature:=100 formation

3200 megapixel camera

LSST six color system

LSST: Joint US DOE/NSF Project

National Science Foundation

- Project Management
- Telescope and site
- Data Management
- Education and Public Outreach
- National Science Board approval: July 2012
 - Possible NSF construction start: 2014

Joint DOE/NSF Project

Department of Energy

- Deliver a 3.2 Giga-pixel camera that meets project requirements
- Agency status:
 - CD-0: Approve Mission Need: Dark Energy Stage IV Experiment(s)
 - CD-1: Select option to move forward and set cost range
 CD-1 granted: March 2012

Integrated Project Schedule with Key Milestones

March 2012

LSST Observing Cadence

Pairs of 15 second exposures (*to 24.5 mag*) per visit to a given position in the sky.

Visit the same position again within the hour with another pair of exposures.

Number of 9.6 sq.deg field-of-view visits per night: 850

Detection of transients announced within 60 seconds. Expect 1-2 million alerts per night!

Two planned LSST surveys

MAIN SURVEY Deep Wide Survey: 18,000 square degrees to a uniform depth of *u*: 26.1 *g*: 27.4 *r*: 27.5 *i*: 26.8 *z*: 26.1 *y*: 24.9

DEEP DRILLING SURVEY

10% of time:~30 selected fields.300 square degreesContinuous 15 sec exposures.1hour/night

LSST Wide-Fast-Deep survey

Time domain:
 1 million supernovae
 10 billion stars
 new phenomena

Predicted number of detectable variables in a 10 Sq Deg field at I=96, b=-60, in the g-filter. From Kepler statistics.

Class	Model Star Count	Variability >25 mmag	Variability >10 mmag
G giant	736	3.6	5.9
K giant	33	0.2	0.4
M giant	0	0.0	0.0
A dwarf	0	0.0	0.0
F dwarf	5695	17.8	29.5
G dwarf	8420	27.6	46.6
K dwarf	17556	163.7	267.0
M dwarf	21147	438.9	563.8
Total	53587	651.8	913.2
Fraction		1.22%	1.70%

Ridgway 2012

LSST is expected to image ~400 fields per night (most at least 2x during the night).

Depending on the photometric cut and the position on the sky, LSST could detect ~500 to 20000 variable stars per field, or ~200,000 per night. These would be among the ~1-2 million transient alerts issued every night.

Most variables stars (~90%) will be K and M dwarfs, readily identified as such from photometry.

Expected rate of transients

Class	Mag	t (days)	Universal Rate	LSST Rate
Luminous SNe	-1923	50 - 400	10 ⁻⁷ Mpc ⁻³ yr ⁻¹	20000
Orphan Afterglows SHB	-1418	5 -15	3 x10 ⁻⁷⁹ Mpc ⁻³ yr ⁻¹	~10 - 100
Orphan Afterglows LSB	-2226	2 - 15	3 x 10 ⁻¹⁰¹¹ Mpc ⁻³ yr ⁻¹	1000
On-axis GRB afterglows	37	1 - 15	10 ⁻¹¹ Mpc ⁻³ yr ⁻¹	~50
Tidal Disruption Flares	-1519	30 - 350	10 ⁻⁶ Mpc ⁻³ yr ⁻¹	6000
Luminous Red Novae	-913	20 - 60	10 ⁻¹³ yr ⁻¹ Lsun ⁻¹	80 - 3400
Fallback SNe	-421	0.5 – 2	<5 x 10 ⁻⁶ Mpc ⁻³ yr ⁻¹	< 800
SNe la	-1719.5	30 - 70	3 x 10 ⁻⁵ Mpc ⁻³ yr ⁻¹	200000
SNe II	-1520	20 - 300	(38) x 10 ⁻⁵ Mpc ⁻³ yr ⁻¹	100000

Extrapolated from Rau, et al. 2009, based on PTF data

Example: The Science Enabled by LSST

Time domain science

- Novae, supernovae, GRBs
- Source characterization
- Instantaneous discovery

Finding moving sources

- Asteroids and comets
- Proper motions of stars
- Mapping the Milky Way
 - Tidal streams
 - Galactic structure
- Dark energy and dark matter
 - Gravitational lensing
 - Slight distortion in shape
 - Trace the nature of dark energy

How does one do research when faced with trillions of catalog entries, and potentially millions of measurements for each class of objects?

<u>Getting to</u> the Science Enabled by LSST

Finding the unusual

- Anomaly detection
- Dimensionality reduction
- Cross-matching data

Finding moving sources

- Tracking algorithms
- Kalman filters

Mapping the Milky Way

- Density estimation
- Clustering (n-tuples)
- Dark energy and dark matter
 - Computer vision
 - Weak Classifiers
 - High-D Model fitting

To take advantage of LSST, Euclid, SKA, and large surveys in general, the next generation of students must grow up with terms such as these.

Old Paradigm

Astronomer+ pencil+paper

INSTRUMENT

TELESCOPE

New Paradigm

DATA ENABLED DISCOVERY

INSTRUMENT

Harnessing Survey Data at Exascale

> Number of scientists does not scale with the data!

Database is the <u>new Lab</u>, the <u>new</u> <u>Experiment</u>

Sparse matrix of databases: observations, and simulations of observations

LSST: A Petascale Survey of the Optical Sky

Final Image Archive	345 PB	All Data Releases Includes Virtual Data (315 PB)
Final Image Collection	75 PB	Data Release 11 (Year 10) Includes Virtual Data (57 PB)
Final Catalog Archive	46 PB	All Data Releases
Final Database	9 PB	Data Release 11 (Year 10) Includes Data, Indexes, and DB
	32 trillion rows	Śwap
Final Disk Storage	228 PB 3700 drives	Archive Site Only
Final Tape Storage	83 PB 3800 tapes	Single Copy Only
Number of Nodes	1800	Archive Site Compute and Database Nodes
Number of Alerts Generated	6 billion	Life of survey

* Virtual Data is data that is dynamically recreated on-demand from provenance information

Major challenge and opportunity:

Discovering The Unexpected

LSST Outreach Data will be used in classrooms, science museums, and online

Classroom Emphasis on:

- Data-enabled research experiences
- Citizen Science
- College classes
- Collaboration through Social Networking

DATA PRODUCTS

Application Layer -

Generates open, accessible data products with fully documented quality

Processing	Image Category	Catalog Category	Alert Category
Cadence	(files)	(database)	(database)
Nightly Data Release (Annual)	Raw science image Calibrated science image Subtracted science image Noise image Sky image Data quality analysis Stacked science image Template image Calibration image RGB JPEG Images Data quality analysis	Source catalog (from difference images) Object catalog (from difference images) Orbit catalog Data quality analysis Data quality analysis (from calibrated science images) Object catalog (optimally measured properties) Data quality analysis	Transient alert Moving object alert Data quality analysis Alert statistics & summaries Data quality analysis

IMAGE SIMULATIONS

