The Stony Brook/SMARTS Atlas of Southern Novae

Frederick M. Walter Sarah Towers Andrew Battisti

http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/

With prodding from Howard Bond and Guy Stringfellow

What to do with Too Many Observations of Novae

Atlas Statistics

- Observations of 70 Novae
 - First observation: 4 April 2003 (V4743 Sgr)
 - Latest Observation: probably last night
- Lots of data (as of 1 January 2013)
 - Over 2700 photometric obs (BVRIJHK)
 - Over 3000 spectra
- Over 8 years coverage in cases

Spectroscopy

- RC spectrograph on the CTIO 1.5m
- Primary observing modes
 - 13/I: 3200 9500A; R=400
 - 26/I: 3660 5450A; R=1000
 - 47/I: 5650 6070A; R=2000
 - 47/II:4070 4740A; R=3000
- Limiting magnitudes:
 - -~16 (continuum); ~18 (lines)

Photometry

- Andicam imager on CTIO 1.3m
- Simultaneous optical (BVRI) and nIR (JHK_s) imaging
- Limiting magnitudes:
 - –∼15 (K)
 - ~22 (V)
- Differential photometry calibrated later

Populations of the Atlas

- 25% He-N; 75% Fe II
- >50% exhibit P Cyg absorption
- 6 LMC novae (3 He-N; 1 O-Ne-Mg)
- 1 SMC nova (O-Ne-Mg)
- Not complete

Nova Chevy 1969

Examples of Data: Photometry

N LMC 2009b

N Cen 2012

Examples of Data: Spectroscopy

Coronal lines in V574 Pup V574 Pup 6 **↓** He I 5876 **↓**[Fe VII] 6087 **↓**[Fe X] 6375 WWWWWW 070404-5 Flux "_h,060512 4 Normalized 051206 З 050605 2 050328 041130 1 **↑ OVI 6200** 0 5800 6000 6200 6400 6600

Angstroms

ТРух

T Pyx

KT Eri

KT Eri

KT Eri

Motivation (Unsolved Problems)

- What are the progenitor systems?
- Why do He-N novae and Fe II novae differ?
- Where does the Neon come from?
- What kinds of systems form dust?
- What determines the length of the SSS phase?
- Are there optical proxies of the SSS?
- Line profiles:
 - Ejecta or disks?
 - Are there bi-polar jets?

How the Atlas Helps

- Systematic observations for over 8 years
 - Timescales for line evolution
 - Contemporaneous with X, UV, IR observations
- Multi-wavelength B K_s OIR photometry
 - Separate line/continuum fluxes
 - Identify dust even if not in line of sight
- Optical spectroscopy
 - 3300-9500A
 - Ionization states through Fe XIV
 - Line profiles resolved
- Mostly unbiased
 - Declination < +10°
 - $-V_{max} < 12 mag$

Selected Science

Line profiles in He-N novae: Accretion disks or expanding rings?

Evolution of the H α profiles in YY Dor

Black: He II 4686 flux Blue: SSS X-ray flux Decrease in He II flux from peak is comparable to the decrease in the X-ray flux

Line Flux in an Expanding Torus

•Volume ~ A x $2\pi(R_o+vt)$

–A = cross section of torus

 $-R_0 = WD$ radius

-v = expansion velocity (2000 km/s)

• Density ~ ρ_0 /Avt (A optimistically assumed constant)

•EM
$$(n_e^2 V) \sim t^{-1}$$

•Illumination $\sim R^{-2} \sim t^{-2}$

•Recombination line brightness ~ t⁻³

- •Ring >470 AU across in KT Eri (day 380).
- •Expected flux decrease>1.E5;
- observed decrease ~ 3000

Goal

Determine why all the He-N novae

- have similar line profiles, and
- Why the resemble accretion disks

Explain the narrow central emission spike

The λ4640 complex and He II 4686

- Unexpectedly strong N III 4640A emission is seen in:
 - Planetary Nebulae
 - Low mass X-ray binaries
 - Cataclysmic Variables
 - Seyfert galaxies
 - and novae!
- This is generally attributed to the Bowen
 Fluorescence mechanism

Bowen Fluorescence (greatly simplified)

- He II Lyman λ 303.783
- pumps **O III** 303.799
- Decays via Bowen lines $\lambda\lambda$ 3100-3400A
- Returns to ground via 374.437
- Pumps N III 374.434, 374.441
- Produces $\lambda\lambda 4634$, 4641, 4642 lines

A probe of the unobservable EUV

Line Evolution in KT Eri

Bowen Fluorescence in the Dynamical Case

- I. Initially, only the N III is visible.
- II. He II 4686 turns on
- III. 4640 turns off
- IV. 4686 turns off as the SSS turns on

A temperature sequence? What is the role of opacity?

Goal

- Understand the excitation mechanisms
- Use the dynamical evolution of the lines as a probe of conditions within the optically-thick envelope

The V Sge Stars

- Binary systems, 5h < P < 12h
 - Broad, V-shaped eclipse
 - Weak secondary eclipse
- Permitted NV, OVI lines
- He II 4686 > H β
- He I weak or absent
- $W_{\lambda}(H\alpha) > 50A$
- Resemble the persistent SSS

The Evolution of NR TrA (Nova TrA 2008)

Developed Eclipses ~ day 1300

Folded, P=5.25 hours

Implications for V Sge

- Nova contain a WD
- NR TrA and XMMU J1151 were SSS; they may still be
- They are likely WDs undergoing steady surface nuclear burning
- Are the V Sge stars "recent" novae?

V5588 Sgr

A Relaxation Oscillation?

Summary

The Stony Brook/SMARTS Atlas of (mostly) southern novae is provided as a resource to the community.

- High cadence, Long term, Multiwavelength investigations
 - -provide synergies with other observations (*e.g.*, *Swift*) and

-reveal new insights into this highly dynamic nova phenomenon

Details: PASP, 124, 1057 (2012)

