Integral Field Unit Spectroscopy of the Helium Nova V445 Puppis

Sally Macfarlane^{1,2}

Danny Steeghs³, Patrick Woudt² ¹Radboud University Nijmegen, IMAPP; ²UCT Astronomy Department, ACGC ; ³University of Warwick Stella Novae: Past and Future Decades

Content

OBSERVATIONS

- IFU spectroscopy
- V445 Observations

RESULTS

- The nova shell
- The knots

Sally Macfarlane

Stella Novae: Past and Future Decades

Helium Novae

Sally Macfarlane

Stella Novae: Past and Future Decades

V445 Puppis as a helium nova

Left: Near-infrared light curves of V445 Puppis before, during and after outburst.

• 28 Nov. 2000: discovered in outburst

• Jul 2001: thick carbon dust shell forms

• Jan 2013: progenitor still obscured by dust disc

V445 Puppis

V445 Pup Properties	
Shell Inclination	3.9 ± 0.4 deg
Distance to Nova	8.2 ± 0.3 kpc
Equatorial Velocity	500 km.s ⁻¹
Shell polar expansion velocity	6720 ± 250 km.s ⁻¹
Knot Velocity	8450 km.s ⁻¹

Mar 2005

Evolving nova shell of V445 Puppis obtained with NAOS/CONICA on the VLT. (Woudt et al. 2009)

Stella Novae: Past and Future Decades

Ν

Knots Evolution

Above: Change in position of knots over time (Woudt et al. 2009)

• Behave independently from shell

 origin coincides with strong radio flare ~345 days postoutburst (Rupen et al. 2001)

> Linear Expansion: 0.217" ± 0.010 yr⁻¹ (Woudt et al. 2009)

Sally Macfarlane

Stella Novae: Past and Future Decades

Observations

Sally Macfarlane

Stella Novae: Past and Future Decades

Integral Field Unit Spectroscopy

Credit: http://ifs.wikidot.com

Stella Novae: Past and Future Decades

Integral Field Unit Spectroscopy

Credit: http://ifs.wikidot.com

Stella Novae: Past and Future Decades

Sally Macfarlane

Stella Novae: Past and Future Decades

Stella Novae: Past and Future Decades

V445 Puppis Spectrum 2006

Sally Macfarlane

Stella Novae: Past and Future Decades

V445 Puppis Spectrum 2006

Sally Macfarlane

Stella Novae: Past and Future Decades

Examining the Nova Shell

Sally Macfarlane

Stella Novae: Past and Future Decades

Examining the Nova Shell

Sally Macfarlane

Stella Novae: Past and Future Decades

Sally Macfarlane

He I

Stella Novae: Past and Future Decades

February 2013

[O II]

He I

Sally Macfarlane

Stella Novae: Past and Future Decades

February 2013

[O II]

Spatially-resolved velocity profiles of the emission line He I $\lambda7065$ and the [O II] $\lambda7320/7330$ doublet (right panels)

Sally Macfarlane

Stella Novae: Past and Future Decades

Spatially-resolved velocity profiles of the emission line He I λ 7065 and the [O II] λ 7320/7330 doublet (right panels)

Sally Macfarlane

Stella Novae: Past and Future Decades

Excess Emission Spectra

Sally Macfarlane

Stella Novae: Past and Future Decades

Spatio-kinematic Modelling

Sally Macfarlane

Stella Novae: Past and Future Decades

Cause of High Velocities in Knots?	
Bow Shocks?	 due to <u>highly collimated outflows</u> in the nova shell. V445 Pup has: an initially very narrow waist. two high speed knots associated with an excess of [O II] and [O III]
	 comparable to 1D hydro-dynamical planetary nebulae models (Schönberner et al. 2005, Raga et al. 2008) some PNe have jet structures called FLIERS (fast low ionisation emission regions)

Ionization Front?

• extreme velocities do not represent the bulk motion of the ejecta or of the knots (Schönberner et al. 2005)

Sally Macfarlane

Stella Novae: Past and Future Decades

Future Analysis

 results can be used in hydrodynamic simulations of axis-symmetric V445 Pup like objects.

 multi-wavelength observations when the equatorial dust disc is clear and the nova remnant is observable will help determine the source of the excess oxygen.

Future Analysis

• results can be used in hydrodynamic simulations of a V445 Pup like system.

 multi-wavelength observations when the equatorial dust disc is clear and the nova remnant is observable will help determine the source of the excess oxygen.

> HST images! May 2013

6.2