

A Survey of Quiescent Novae in M31

Steven C. Williams
Astrophysics Research Institute, Liverpool John Moores University

Matthew J. Darnley, Michael F. Bode & Allen W. Shafter

Introduction

- We use Liverpool Telescope (LT) images of novae in outburst to locate the quiescent systems in archival HST images and detect RG novae.
- Based on Bode et al. (2009) detection of M31N 2007-12b.
- Many of LT images of novae taken as part of a photometric and spectroscopic survey of M31 with Hobby-Eberly Telescope (HET) spectra, our catalogue begins in 2006.
- Our survey only used spectroscopically confirmed novae with LT images.
- Of these nova ~70% have HST coverage.

The LT and HST Data

- Liverpool Telescope (LT)
 images were taken during
 the outbursts. The images
 were selected to give the
 most accurate position,
 taking into account the
 brightness and seeing.
- Coincident HST images
 were selected with a similar
 filter as possible to the LT
 images. The HST images
 were taken on ASC/WFC,
 WFPC2 or WFC3.

Method

- Best LT images were combined.
- Accurate position defined in combined LT image.
- Position in LT image transformed to archival HST image using bright stars visible in each image.
- Photometry performed on any candidates.

Results of Quiescent Novae Survey

M31N 2006-11a - 58%

M31N 2007-10a - 2.7%

M31N 2007-02b - 1.1%

M31N 2007-11b - (V-I) = 2.3

Stella Novae: Past and Future Decades, Cape Town Conference, February 2013

Results of Quiescent Novae Survey

M31N 2007-11d - 0.3% - (B-I) = 4.0

M31N 2009-11d - 2.2% - (B-I) = 0.7

M31N 2010-05a - 37%

M31N 2012-09a - 33%

Results & Discussion

- We find ten systems (28%) with a resolvable source close enough to be a significant detection.
- By significant we mean closer than would be expected to occur by chance less than 5% of the time.
- Eight of these we have been able to get a colour for. Six have (*B*–*I*) colour greater than 2, with one system having (*B*–*I*) colour 4.0.
- Only nova systems with a confirmed red giant secondary are RS Oph, T CrB, V3890 Sgr and V745 Sco. Darnley et al. (2012) and references therein suggest a couple more.

Results of Quiescent Nova Survey

Light Curves with HST Points

- Some novae have HST images taken when they are still fading.
- Light curves from Shafter et al. (2011) can be extended to fainter magnitudes.

Summary & Future Work

- We used LT images to locate the positions of quiescent novae in archival HST images.
- 28% of the systems have a progenitor candidate closer than would be expected occur by chance only 5% of the time.
- Initial results suggest RG nova rate appears to be higher than our Galaxy.
- We also produced deeper light curves for some systems.
- We plan to use the results to produce an estimate of the overall RG-nova population in M31.

