

MeerKAT Data Architecture

Simon Ratcliffe

MeerKAT Signal Path

MeerKAT Data Rates

 The online system receives raw visibilities from the
correlator at a sufficiently high dump rate to
facilitate the following:
 Continuous Tsys calculation
 RFI Flagging
 Baseline dependent time averaging

 The resultant visiblities + cal data + flagging are
written to disk in the medium term archive. The
averaging for this stream is under user control and
variable up to no time averaging.

 A SPEAD stream of output data is also produced
for downstream consumers such as the pipelined
imager.

Online System

 Correlator output is split into a number of sub
bands, each of which is processed in parallel.

 The split depends in the individual capacity of
each element of the parallel system.

 With current technology, 8192 channels can be
processed in a single element (with 1s correlator
dump time) – limited by 10 GbE throughput.

 Parallel HDF5 output file allows multiple
simultaneous writes from each system element.

Online System Detail

Online System Detail

Online System Detail

• With modest current technology (Nvidia GTX
260, Core i7-940) we can fairly easily max out a
10 GbE port (around 8.6 Gbps).

• Decode of the streaming protocol can be done
in CPU or GPU depending on first stage
processing to be performed.

• MeerKAT online elements will leave around 3
GB of RAM and of order 2 Tflops processing
power per block of channels in the GPU.

Online Element Performance

 Streaming Protocol for Exchanging Astronomical
Data

 Joint development between SKA South Africa and
UC Berkeley.

 Designed to handle a wide variety of astronomical
data including voltage, visibility, and sensor data.

 Standard output data format for ROACH based
correlators.

 Aim is to have a single coherent protocol
throughout the entire processing chain (i.e. from
digitisation to imaging)

SPEAD

 There are may formats out there, so why contribute
to the malaise by developing another one ?
– A number of formats pretend to be self describing but

still require some a priori information (e.g VDIF)

– We needed a very small number of mandatories
headers to ease generation of a SPEAD stream by
lower powered devices (i.e. currently 4 words)

– Self description extends through the receiver to present
the user with an hierarchical, annotated data structure
(e.g. numpy record array)

– Soft Pythonic shell with crunchy C bits fits well with a
number of emerging telescopes.

SPEAD

 Specification is currently in revision K.
 Reference Python implementation available from:

http://github.com/sratcliffe/PySPEAD.git
 MeerKAT will use SPEAD within the correlator,

online systems, and general access pipelines.
 Meta-data from telescope sensors will be

broadcast as SPEAD streams for use throughout
the processing chain.

SPEAD

http://github.com/sratcliffe/PySPEAD.git

• SPEAD is our standard on the wire protocol.

• Projects bringing their own equipment will be
encouraged (and helped) to use this as their input
format.

• HDF5 will most likely be our on disk format for both
voltage and visibility data (mostly due to support
for parallel writes).

• In the engineering phase we will support MS and
uvfits. Other adapters easy to write due to
availability of both meta and signal data streams.

• Likely MS will move to HDF5 based format at
some stage

File Output Support

 A certain subset of the live data is made available
in real time to subscribing clients.

 This gives realtime access to the data, and
coupled with a wide variety of canned plots, allows
extensive monitoring of the signal path.

 The displays are accessible via the standard
iPython control shell.

 Diverse diagnostics such as ADC input
histograms, amplitude and phase closures,
spectral displays and dirty images can all be
shown (and animated in real-time).

Signal Displays

 Plotting for signal displays is handled via matplotlib.

 We have developed an HTML5 based matplotlib backend which allows
the plots to be viewed from any location through a web browser.

 This provides a number of benefits:
 A completely cross platform backend (any OS supported by either Chrome or

Firefox)

 High speed animation (fairly complex plots can be animated up to 60 fps) and
optimal network bandwidth usage (esp. compared to X forwarding)

 User does not have to be collocated with the data to be processed (uses iPython
distributed computing framework)

 Pure Python module means no extra dependencies.

 Thumbnail browser shows all available plots and allows easy switching between
them.

 Fully interactive including zooming and clickable axes.

 Client data can persist through network disconnects and server process being
killed.

Matplotlib HTML5

• We are just beginning our work on the post
correlator architecture.

• Feedback and involvement from the user
community will greatly aid us in developing and
refining the requirements.

• Early involvement in these discussions will
naturally lead to early access to both KAT-7 and
MeerKAT :)

Early Access and Collaboration

In Summary

• We hope to have a functional and flexible data
architecture for MeerKAT within the next year.

• This will be built out to include a range of
standard products, as well as interfacing to
more custom projects.

• Users will be able to request data from a variety
of stages at a variety of rates.

• Inspection tools should be useful to both
engineering staff and scientific end users.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

