

MeerKAT Data Architecture

Simon Ratcliffe

MeerKAT Signal Path

MeerKAT Data Rates

 The online system receives raw visibilities from the
correlator at a sufficiently high dump rate to
facilitate the following:
 Continuous Tsys calculation
 RFI Flagging
 Baseline dependent time averaging

 The resultant visiblities + cal data + flagging are
written to disk in the medium term archive. The
averaging for this stream is under user control and
variable up to no time averaging.

 A SPEAD stream of output data is also produced
for downstream consumers such as the pipelined
imager.

Online System

 Correlator output is split into a number of sub
bands, each of which is processed in parallel.

 The split depends in the individual capacity of
each element of the parallel system.

 With current technology, 8192 channels can be
processed in a single element (with 1s correlator
dump time) – limited by 10 GbE throughput.

 Parallel HDF5 output file allows multiple
simultaneous writes from each system element.

Online System Detail

Online System Detail

Online System Detail

• With modest current technology (Nvidia GTX
260, Core i7-940) we can fairly easily max out a
10 GbE port (around 8.6 Gbps).

• Decode of the streaming protocol can be done
in CPU or GPU depending on first stage
processing to be performed.

• MeerKAT online elements will leave around 3
GB of RAM and of order 2 Tflops processing
power per block of channels in the GPU.

Online Element Performance

 Streaming Protocol for Exchanging Astronomical
Data

 Joint development between SKA South Africa and
UC Berkeley.

 Designed to handle a wide variety of astronomical
data including voltage, visibility, and sensor data.

 Standard output data format for ROACH based
correlators.

 Aim is to have a single coherent protocol
throughout the entire processing chain (i.e. from
digitisation to imaging)

SPEAD

 There are may formats out there, so why contribute
to the malaise by developing another one ?
– A number of formats pretend to be self describing but

still require some a priori information (e.g VDIF)

– We needed a very small number of mandatories
headers to ease generation of a SPEAD stream by
lower powered devices (i.e. currently 4 words)

– Self description extends through the receiver to present
the user with an hierarchical, annotated data structure
(e.g. numpy record array)

– Soft Pythonic shell with crunchy C bits fits well with a
number of emerging telescopes.

SPEAD

 Specification is currently in revision K.
 Reference Python implementation available from:

http://github.com/sratcliffe/PySPEAD.git
 MeerKAT will use SPEAD within the correlator,

online systems, and general access pipelines.
 Meta-data from telescope sensors will be

broadcast as SPEAD streams for use throughout
the processing chain.

SPEAD

http://github.com/sratcliffe/PySPEAD.git

• SPEAD is our standard on the wire protocol.

• Projects bringing their own equipment will be
encouraged (and helped) to use this as their input
format.

• HDF5 will most likely be our on disk format for both
voltage and visibility data (mostly due to support
for parallel writes).

• In the engineering phase we will support MS and
uvfits. Other adapters easy to write due to
availability of both meta and signal data streams.

• Likely MS will move to HDF5 based format at
some stage

File Output Support

 A certain subset of the live data is made available
in real time to subscribing clients.

 This gives realtime access to the data, and
coupled with a wide variety of canned plots, allows
extensive monitoring of the signal path.

 The displays are accessible via the standard
iPython control shell.

 Diverse diagnostics such as ADC input
histograms, amplitude and phase closures,
spectral displays and dirty images can all be
shown (and animated in real-time).

Signal Displays

 Plotting for signal displays is handled via matplotlib.

 We have developed an HTML5 based matplotlib backend which allows
the plots to be viewed from any location through a web browser.

 This provides a number of benefits:
 A completely cross platform backend (any OS supported by either Chrome or

Firefox)

 High speed animation (fairly complex plots can be animated up to 60 fps) and
optimal network bandwidth usage (esp. compared to X forwarding)

 User does not have to be collocated with the data to be processed (uses iPython
distributed computing framework)

 Pure Python module means no extra dependencies.

 Thumbnail browser shows all available plots and allows easy switching between
them.

 Fully interactive including zooming and clickable axes.

 Client data can persist through network disconnects and server process being
killed.

Matplotlib HTML5

• We are just beginning our work on the post
correlator architecture.

• Feedback and involvement from the user
community will greatly aid us in developing and
refining the requirements.

• Early involvement in these discussions will
naturally lead to early access to both KAT-7 and
MeerKAT :)

Early Access and Collaboration

In Summary

• We hope to have a functional and flexible data
architecture for MeerKAT within the next year.

• This will be built out to include a range of
standard products, as well as interfacing to
more custom projects.

• Users will be able to request data from a variety
of stages at a variety of rates.

• Inspection tools should be useful to both
engineering staff and scientific end users.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

