

Brad Warren, ICRAR@UWA

The HI Mass-to-Light Ratio

• Distance independent quantity:

$$\mathcal{M}_{\rm H\,I}/L_{\rm B} = 1.5 \times 10^{-7} \; \rm F_{\rm H\,I} \; 10^{0.4 (m_B - A_B)} \; \; \mathcal{M}_{\odot}/L_{\odot,B}$$

- Galactic extinction $A_{\rm B}$ is taken from the Schlegel et al. (1998) dust maps. Internal extinction is not taken into account currently.
- Typical values are < 1 $\mathcal{M}_{\odot}/L_{\odot,B}$ for late-type galaxies (Roberts & Haynes, 1994).
- Galaxies have been found with significantly higher ratios, often with extended HI envelopes.

ESO 215-G?009

ESO 215-G?009 (Warren et al. 2004)

- $\mathcal{M}_{\rm H\,I}/\rm L_B = 22 \pm 4~\mathcal{M}_{\odot}/\rm L_{\odot,B}$.
- One of the highest (if not the highest) $\mathcal{M}_{\rm H\,I}/L_{\rm B}$ to be confirmed by accurate measurement.
- H I extends 6.4 ± 0.4 times the optical radius.
- Velocity field shows a regular rotating disc.
- SFR_{20cm} < \sim 2.5 × 10⁻³ \mathcal{M}_{\odot} yr⁻¹.
- <SFR $>_{past} \sim 2.7 \times 10^{-3} \ M_{\odot} yr^{-1}$.
- Appears isolated (nearest galaxies ~2 Mpc away).

Other Gas Rich Dwarfs

- DDO 154 (Carignan & Beaulieu, 1989)
 - $-\mathcal{M}_{\rm H\,I}/\rm L_B$ = 9.4 $\mathcal{M}_{\odot}/\rm L_{\odot,B}$
- NGC 3741 (Begum et al., 2005)
 - $-\mathcal{M}_{\rm H\,I}/\rm L_B$ = 5.8 $\mathcal{M}_{\odot}/\rm L_{\odot,B}$
- NGC 2915 (Meurer et al., 1994, 1996)
 - $-\mathcal{M}_{\rm H\,I}/\rm L_B = 2.7\,\,\mathcal{M}_{\odot}/\rm L_{\odot,B}$
- UGCA 292 (Young et al., 2003)
 - $-\mathcal{M}_{\rm H\,I}/\rm L_B = 7.0~\mathcal{M}_{\odot}/\rm L_{\odot,B}$

Meurer et al.

Finding More Gas-Rich Dwarfs

- The number of know high HI mass-to-light ratio dwarf galaxies is very small.
- A few dozen with > 2 $\mathcal{M}_{\odot}/L_{\odot,B}$, only a handful > 5 $\mathcal{M}_{\odot}/L_{\odot,B}$.
- Strong HI line emission, but hard to detect at optical wavelengths.
- How can we increase these numbers?
- Best to start with blind HI surveys and combine with available optical photometry.

HIPASS and other existing surveys

- More of these galaxies may have been detected in HIPASS but gone unnoticed.
- Several galaxies may have wrong magnitudes.
- HIPASS sources with no know optical counterpart (or one that has not been imaged).
- We need to have good optical follow-up dwarf galaxies, preferably more than just B band.
- Can Skymapper give us the the accurate magnitudes we need?

MeerKAT and WALLABY

- MeerKAT will be crucial for following-up know gas-rich dwarfs.
- Source confirmation, velocity fields, full extent of HI discs.

- WALLABY will likely detect many more of these galaxies.
- But unless we have good optical follow-up they will go unnoticed in the catalogues.

