

Apertif

Paolo Serra

Tom Oosterloo (PI) Marc Verheijen (PI) Laurens Bakker George Heald Wim van Cappellen Marianna Ivashina

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Netherlands Institute for Radio Astronomy

Outline

- Instrument overview
- Past results
- Recent developments
- Plans for data flow, reduction and archive
- Science with Apertif

I. Instrument overview

What is Apertif?

Apertif is an upgrade of the WSRT

- 12 (13) 25-m dishes on an east-west array
- equatorial mount
- baselines from 36 m to 2.7 km

Main point: replace single-pixel feeds with phased array feeds

- frequency range = I-I.7 GHz (strong GSM band below I GHz)
- instantaneous BW =300 MHz (decision based on funding, but good for HI)
- expands FOV by a factor 30, increase survey speed by a factor 60 at full BW

hased array feeds band below I GHz) sed on funding, but good for HI) ey speed by a factor 60 at full BW

Vivaldi array

56 x 2 receivers

Survey speed

	EVLA	Apertif	MeerKat	ASKAP	WSRT
A/T	2	1	2	0.5	1
FoV	1	30	4	120	1
Bandwidth	3	2	2	2	1
Survey Speed Shallow	4	30	16	30	1
Survey Speed Deep	12	60	32	60	1

2. Past results ("despite" LOFAR)

Beginning 2008: Single dish

M31 with DIGESTIF I pointing, 121 beams

2.5°

M31 with WSRT 163 pointings

End 2008 - 2009: compound beams

Element beams are ugly...

Amplitude of weighting coefficients for maximum SNR, 1421.2 MHz

-5

-10

-15

-20

-25

-30

... but compound beams are very well behaved

End 2008 - 2009: interferometry with single-element **AST(RON**

2009: interferometry with compound beam

offset?

3. Recent developments

Standing waves no more

Standing waves are a problem common to all dishes Can PAFs be the solution?

LNA below 10 K

(Not included in current T_{sys} ~50 K estimate for Apertif)

And more on-going work...

- Digestif-3 installed: - rotated elements to reduce FOV elongation
- Real-time beam former (from LOFAR)
- Funding proposal being evaluated by NWO (correlator, archive, pipeline, people)
- Vivaldi arrays on GMRT (with LOFAR beam former); Effelsberg
- Vivaldi on BETA as part of PAFSKA:
 - test different receivers in same conditions (dish etc.)
 - PAF-PAF interferometry

4. Plans for data flow, reduction and archive

LOFAR for Apertif

LOFAR framework (it works and it's for free!)

- Real-time beam former from LOFAR - correlate with signal from all other 13 dishes - possibility of full 12-h synthesis Ideal to test compound beam stability and understand calibration needs
- Adaptation of existing LOFAR calibration software to WSRT data has started
- LOFAR archive usage starting

LOFAR 173 MHz (van Weeren)

VLA I.5 GHz (Leahy & Perley 1991)

RFI

Good RFI situation - LOFAR HBA (110-250 MHz) loses only ~5% of the data

5. HI Science with Apertif

Apertif HI surveys

- shallow all sky matching WALLABY (a few hours per pointing)
- deep to z~0.25 (10x12h over 1000 sq deg)
- ultra-deep to z~0.4 ?

HI at z=0.2 with the WSRT

20×12 hr at z = 0.2 (Verheijen et al) Several dozen detections in single WSRT field Apertif is 100 times more efficient

Now I00xI2 hr on a single field done for this project with > I00 detections

Conclusions

- Apertif will expand the FOV of the WSRT by a factor 30 at 1-1.7 GHz Compound beam properties studied in detail First interferometry using Digestif with WSRT MFFEs

- No standing waves
- Digestif on GMRT, Effelsberg, BETA
- Real-time beam forming and full synthesis with whole array coming soon LOFAR architecture for calibration, archive

