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Chapter 1. Literature review 

In order to effectively manage our natural environment it is necessary to 

understand its current condition and how this condition has changed over time. To 

accurately describe their condition it is often useful to examine the past, so that 

present conditions can be compared with those in the past. It is also important to 

realise the damage past oversights have had, with a view towards preventing similar 

occurrences from happening in the future. Ideally we need to know what the 

system’s undisturbed baseline condition was. Trying to establish baselines is a 

challenging task, as it is not always possible to recall with accuracy the gradual 

changes over time. This has led to the term ‘shifting baseline syndrome’ being 

coined by Pauly (1995).  

This illustrated review examines four main categories of change on the rocky 

shores of the Western Cape with the aid of repeat photography. The subjects of 

interest are: changes in range, climate change, intertidal invasions and direct 

anthropogenic effects. 

1.1 Changes in range 

Species can expand into new ranges naturally, i.e. without the aid of man, 

which is common enough after certain geological events, such as tectonic shifts. 

Climatic shifts may also trigger natural expansion of organisms into areas that they 

may have previously been unable to colonise (Grosberg and Cunningham 2001). 

Organisms capable of modifying habitat, which colonize new areas, can have 

substantive effects on community structure in the areas into which they expand 

(Ling 2008).  
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There are genetic differences between newly-colonised areas and the 

regions that contain the parent population. Newly-colonised areas are likely to have 

lower genetic diversity, as their population would contain a subset of the parent 

population’s total alleles (Grosberg and Cunningham 2001). Range shifts have been 

seen in a variety of terrestrial species around the globe and have mostly been linked 

to changing climatic conditions (Chen et al. 2011). Similar observations have been 

made of intertidal organisms in England, leading to the suggestion that certain 

intertidal animals could serve as indicator species of climate change (Mieszkowska 

et al. 2006). Rouault et al. (2010) report a cooling trend of as much as 0.5˚C per 

decade in the southern Benguela, which has consequences for the organisms which 

inhabit the area. Long-term studies have reported that in 10 years it is possible for 

intertidal organisms to shift polewards by as much a 50 km (Helmuth et al. 2006).  

Bolton and Anderson (1990) stated that the greatest contributing factor to 

seaweed dispersal and community composition was sea surface temperature. 

Interestingly Griffiths and Mead (2011) have observed increases in the range of 

certain cold water kelp species within False Bay, which seem to correlate with 

decreasing sea surface temperatures. 

While the ranges of some species may expand because changing 

environmental conditions make conditions more favourable for them, ranges can 

also contract, for those organisms that are not as well adapted to the changing 

conditions and may lose their competitive edge. For example, cooler conditions, as 

well as increased competition with the invasive colder-water specialist Mytilus 

galloprovincialis, has resulted in the range contraction of the brown mussel, Perna 

perna, in the Western Cape (Griffiths and Mead 2010).  
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1.2 Climate change 

Climate change is predicted to cause large-scale changes to ocean 

circulation patterns, changing biogeochemical cycles, which in turn may cause 

changes in species community compositions (Johnson et al. 2011).  In Australia, a 

consequence of climate change was the increase in the speed of the East 

Australian Current, which had wide-ranging consequences. Of interest to this study is 

the reported loss of kelp bed habitat due to a decreased nutrient load within the 

current. Over-fishing of rock lobster also contributed to the reduced resilience of the 

habitat (Johnson et al. 2011). Recently climate change has become a topic of 

increased research and interest in biology (Simkanin et al. 2005). Global 

temperatures have risen consistently over the last century, with a 0.74˚C linear trend 

in those 100 years. In the last 50 years terrestrial temperatures have risen 0.13˚C per 

decade (Intergovernmental Panel on Climate Change [IPCC], 2007). Interestingly as 

mentioned earlier closer inshore along the South Coast there has been a decrease 

in SST, this opposed to the global average for SSTs for the period between 1985 and 

2004 which showed an increase per decade of between 0.18˚C and 0.17˚C (Good 

et al. 2007). 

 A further consequence of climate change is sea level rise. The global 

average rise in sea level between 1961 and 2003 was 1.8 mm per year, with the ten 

year period between 1993 and 2003 averaging 3.1 mm per year; 57% of this is as a 

result of thermal expansion of the oceans. Ice caps and glaciers have contributed 

to 28% of recent sea level rise, with the remaining 15% made up from retreating 

polar ice sheets (IPPC 2007). Long term changes in mean sea level can also be 

brought about by the movement of tectonic plates (Muller et al. 2008). 
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It is predicted that climate change will result in, among other things, reduced 

productivity due to decreased nutrient supply, as mentioned above with regards to 

the East Australian Current (Barange et al. 2010; Wernberg et al. 2011).  However, 

logic would dictate that it is also possible for the changing climatic conditions to 

benefit certain species, as has been seen with the range expansions of intertidal 

organisms in England (Mieszkowska et al. 2006). 

The most important factor affecting the distribution of intertidal seaweed 

communities is water temperature in the surrounding sea (Bolton and Anderson 

1990). In Australia it was thought that warming of the ocean waters, along with an 

increase of low level nutrient waters, has led to a range contraction of Macrocystis 

pyrifera (Wernberg et al. 2011). Kelps are not the only marine organisms to be 

affected by changing temperatures; responses to warming temperatures have 

been observed throughout the trophic levels, from plankton through to fish, ranging 

from changes in phenology, abundance and distributions (Mieszkowska et al. 2006). 

Intertidal invertebrates were resurveyed in order to determine if they had undergone 

any changes in range due to warming sea surface temperatures. Range extensions 

had occurred, but the authors cautioned that these extensions could not exclusively 

be linked to warming temperatures, as other influences, such as coastal 

development and other anthropogenic effects, could influence the signal, 

laboratory testing had to be carried out to determine exactly what the effects of the 

new temperature range would be (Mieszkowa et al. 2006). 
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1.3 Intertidal invasions 

Ecological invasions have most likely been occurring in the oceans ever since 

man began navigating the seas (Robinson et al. 2005). There are two categories of 

introduction: deliberate and accidental introductions. Deliberate introductions 

involve the planned introduction of exotic species, often as ornamental or food 

organisms while accidental introductions are unplanned and most commonly 

associated with shipping.  Most transfers of marine alien species have been 

accidental, but some species have been specifically imported for aquaculture 

(Griffiths et al. 1992). Accidental introductions occur in numerous ways i.e. via 

aquaculture practises with poor biological controls, as stowaways in ballast water 

from long distance shipping, the creation of new canals between previously 

geographically divided oceans and via attachment of organisms to ships hulls, 

known as fouling (Branch and Steffani 2004; Griffiths et al. 2009; Haupt et al. 2010). 

For a comprehensive discussion of the vectors of marine invasion into South Africa 

see Griffiths et al. (2009). 

The first marine invasive species were introduced via shipping, these were 

most likely wood-boring shipworms. Their initial date of arrival is not known, but the 

first documented invasive species were likely to have arrived in South Africa in the 

late 1800s (Griffiths et al. 2009).  Since then, there have been many other recorded 

invasions. In the most recent survey, 86 introduced and 39 cryptogenic marine 

species were recorded in South Africa (Mead et al. 2011). As mentioned in the 

previous section genetics can play an important role in elucidating the mechanisms 

involved in the colonization of new areas. It may be possible to use genetic studies 

to determine if a newly-identified colonizing organism resulted from anthropogenic 

influence, or via natural means i.e. a range expansion (Grosberg and Cunningham 
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2001). If the new colony contains unique alleles, the majority of which have been 

passed on from the founding population, it is strong evidence against 

anthropogenic influence (Grosberg and Cunningham 2001). 

All deliberately introduced marine species in South Africa are from the phylum 

Mollusca. Examples include the oysters Ostrea edulis, Crassostrea angulata and 

Crassostrea gigas (Griffiths et al. 1992). They were initially introduced for aquaculture, 

under the assumption that local conditions would not support escaped populations, 

for instance, C. gigas does not spawn well in the Knysna Estuary and thus the farmed 

population is supported by imported spat (Robinson et al. 2005). Even though it 

suffers from poor recruitment, small self-sustaining populations have been found in a 

few estuarine sites, namely the Knysna, Goukou and Breede River Estuaries (Robinson 

et al. 2005). Other less-prominent intertidal invasions have occurred, such as the 

introduction of the periwinkle Littorina saxatilis, which was first recorded in 1974 in 

Langebaan Lagoon and Knysna Estuary (Robinson et al. 2005). For the most current 

list of marine invasive species in South Africa see Mead et al. (2011). The three most 

prolific marine invasives in South Africa are the European shore crab (Carcinus 

maenas), the Mediterranean mussel (Mytilus galloprovincialis) and the Pacific 

barnacle (Balanus glandula) (Griffiths et al. 1992; Robinson et al. 2005; Laird and 

Griffiths 2008; Simon-Blecher et al. 2008; Griffiths et al. 2009).  

M. galloprovincialis covers some 2050 km of the South African coast. It was 

first noted in 1979 and only classified correctly in 1985, by which time it was well 

established (Griffiths et al. 1992; Robinson et al. 2005). It is believed that M. 

galloprovincialis arrived either in the ballast water, or on the hull of a ship in 

Saldanha Bay harbour on the west coast of South Africa. It moved rapidly along the 

coast and reached the south coast only 10 years later (Robinson et al. 2005). Its 
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rapid growth and expansion were likely supported by the nutrient-rich upwelling 

region along the west coast, which supports large amounts of planktonic biomass. 

M. galloprovincialis competed against the local mussel Choromytilus meridionalis 

which is not as well adapted to dealing with emersion.  M. galloprovincialis also has 

a greater rate of reproductive success and a greater growth rate than indigenous 

mussel species (Robinson et al. 2005; Joubert 2009). 

One of the most wide-spread, though only relatively recently reported 

invasives in South African coastal waters is the North-east Pacific acorn barnacle B. 

glandula. It was first reported by Simon-Blecher et al. (2008), although Laird and 

Griffiths (2008) found photographic evidence that implies B. glandula arrived in 

South Africa either before or around 1992. B. glandula is thought to be adapted to 

cold and temperate waters, as evidenced by its invasion of colder water climates in 

Japan in the 1960’s and Argentina in 1976 (Laird and Griffiths 2008; Simon-Blecher et 

al. 2008). The presence of barnacles on the west coast was limited prior to invasion 

of B. glandula and it appears that B. glandula has taken advantage of this relatively 

unoccupied area to establish itself. Since its introduction it has become the most 

common barnacle on the west coast of South Africa (Laird and Griffiths 2008). Its 

presence has influenced the zonation of the shoreline where it occurs by providing 

shelter for Afrolittorina kysnaensis. It is thought that B. glandula may also have 

excluded or outcompeted other intertidal organisms (Laird and Griffiths 2008; Simon-

Blecher et al. 2008). 

Effects of invasions 

The effects of invasions can be measured in different ways; economically, i.e. 

money being spent in order to control or combat the organism or via ecological 

impacts, such as the displacement or fouling of other economically important 
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species. Ecologically, the impact could be measured by the amount of disturbance 

the organism imparts on the biodiversity or community structure of the indigenous 

organisms at the affected site. Pimentel (2000) estimated that globally there are 

120,000 invasive species that cost $314 billion per annum in control and damages. 

It is unknown how many alien species reach foreign shores every year and fail 

to establish themselves, as they may not be able to compete against the local 

fauna and flora, or are poorly adapted to the physical demands the environment 

places upon them. The European shore crab C. maenas has been able to invade 

South African waters, but after three decades remains confined to sheltered bays 

(Hampton and Griffiths 2007; Mead et al. 2011). This is due to its inability to cope with 

South Africa’s exposed shores. It does, however, pose a threat to other sheltered 

marine habitats and it is thought that an invasion by C. maenas into the sheltered 

waters of Saldanha Bay would be devastating for the indigenous intertidal organisms 

(Robinson et al. 2005).     

In South Africa the most prolific marine invasive M. galloprovincialis has not 

proven to have had a severe negative economic impact. In fact an industry has 

grown up around the introduced species in the form of lucrative mussel farms (Lach 

et al. 2002). However, another invasive, Ciona intestinalis costs the mussel industry an 

estimated R100 000 each year due to the fouling of mussel ropes (Robinson et al. 

2005). Estimates have yet to be made on how much it costs the shipping industry to 

remove C. intestinalis from ships hulls. 
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1.4 Direct anthropogenic effects 

Anthropogenic impacts can be difficult to detect on rocky shore 

communities, due to various evolutionary adaptations that allow intertidal organisms 

to better cope in the stressful environment in which they find themselves (Crowe et 

al. 2000). The potential impacts are many, and include pollution, climate change, 

shipping, mineral extraction, habitat modification, disturbance and overexploitation 

(Griffiths et al. 2004; Brander et al. 2010). 

Rocky shores have been exploited by man in what is now South Africa for 

some 120 000 to 100 000 years (Siegfried et al. 1994; Griffiths et al. 2004). Initially 

however, the impact of humans on the intertidal zone was limited by the lack of 

technology and small population size. Modern-day exploitation of marine resources 

began in the 1700s (Griffiths et al. 2004). There are 35 species exploited for 

subsistence purposes in South Africa, the main focus being on mussels and limpets, 

with other species such as octopus, redbait and winkles exploited to a lesser extent 

(Siegfried et al. 1994). It has only been relatively recently that commercial 

exploitation of intertidal resources was initiated. However, commercial exploitation 

has focussed on specific highly abundant species that are relatively easy to harvest. 

The amounts collected are subject to regulations which are aimed at providing 

sustainable yields; subsistence collections are much more varied in the range of 

species collected, with significantly lower yield per person and with much smaller 

areas of focus by each harvester, all of which compounds the difficulty in managing 

and defining fishers and enforcing regulations (Siegfried et al. 1994).  

Human overpopulation threatens the coastal ecosystems and it is estimated 

that 40% of the world’s population live within 100 km of the coast: in the year 2000 
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that was 2.3 billion people, and that number is estimated to rise to 3.1 billion by 2025 

(Brander et al. 2010). The most recent population data for the Western Cape put the 

province’s population at 5 287 863 (Statistic South Africa 2011). This number is almost 

13% higher than the predicted population of the Western Cape forecast for the year 

2026 by the Institute of Future Studies in 1996 (Haldenwang and Boshoff 1996).  

1.6.1 Evidence of development disturbances 

Marine biodiversity is under threat due largely to man’s influence on complex 

environments, which has seen impacts to marine habitats across the globe (Pillay et 

al. 2010). Habitat destruction is chiefly caused by increased construction in coastal 

areas, overexploitation and falling levels of water quality (Pillay et al. 2010). The 

decline in Nanozostera capensis, renamed from Zostera capensis on the 

recommendation of Tomlinson and Posluzny (2001), was first documented by Angel 

et al. (2006). It was later investigate by Pillay et al. (2010) who found that between 

1983 and 2009 there was a change in the distribution and density of the sea grass, N. 

capensis. Klein Oesterwal was particularly impacted resulting in a significant 

decrease in the species richness, specifically of those species that lived with sea 

grass. The loss of this habitat brought about other changes, such as an increase in 

the burrowing species in uncovered sands (Pillay et al. 2010). Two incidents leading 

to a loss of N. capensis cover in Klein Oestewal were recorded in 1976 and 2003 

respectively. The first case, blasting and dredging operations in Saldanha Bay may 

have impacted the site. The reason for the second decline is less clear, although it is 

speculated that the collection of prawns for bait with the aid of pumps and 

associated disturbance caused by heavy foot traffic may have negatively 

impacted sea grass cover (Pillay et al. 2010). For a summary of human driven 

change in the South Africa marine environment see Mead et al. (in press).  
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1.5 Historical studies 

There is an increasing trend among ecologists to utilize historical data as a 

reference tool to better understand current ecosystems and how they have 

changed over time, and to better improve their management (Costanza et al. 

2012). This is largely seen in the management of land and water resources, where 

historical data can be used to assess the range and distribution of species when 

they were less impacted upon by man (Swetnam et al. 1999). Historical data can be 

gathered in any number of forms and from across seemingly unrelated fields. For 

example, sediment cores are utilized when determining trends in water quality, while 

weather records and satellite data all play a role in historical ecology (Swetnam et 

al. 1999). The only stipulation is that the data comprise a suitably long time period 

and are able to demonstrate key behaviours of the organisms or systems being 

studied (Swetnam et al. 1999).  

A recent study that emphasized the importance of baseline studies globally 

was carried out by the Natural Geography of Shore Areas within the Census of 

Marine Life programme (Cruz-Motta et al. 2010). Its main aim was to establish 

baselines with regard to patterns of diversity and distribution to enable the detection 

of future changes and what may have caused these changes (Cruz-Motta et al. 

2010). They found that there were six environmental drivers of intertidal species 

spatial distribution. An important observation was that assemblages were very 

closely correlated to aspects of both neutral (latitude) and environmental models 

(sea surface temperature (SST) and Chlorophyll-a). Cruz-Motta et al. (2010) noted 

that in this study, latitude and SST were not strongly correlated and it was put forth 

that SST has an important role in determining global distribution patterns of the 

assemblages studied. Therefore, future changes in SST that result from climate 
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change may disrupt the functioning of these assemblages by changing their 

structure (Cruz-Motta et al. 2010).    

1.6 Photographic sampling 

Photography has always had a record-keeping purpose, whether to 

document famous people, or other news-worthy events, such as wars (Webb et al. 

2010). Prior to photography becoming a practical tool, researchers in biology relied 

on drawings and precise descriptions to pass on what they observed during field 

work (George 1980). In truth, there are very few fields in science which have not 

made use of photography in some form (George 1980). Taxonomy has been a 

benefactor, since colour images taken in the field can be used to record distinctive 

characteristics of organisms that may later lose their pigmentation during 

preservation (George 1980). Of more relevance to this paper are the many uses of 

photography in marine ecology which George (1980) suggests are “…to aid site and 

habitat description, to record the relationship of plants and animals to the 

environment and to one another, to measure population numbers and the size of 

individual organisms, and to record the changes in community structure that take 

place with time.” This list does not take into account the advantages of video to 

document behavioural studies. As the old adage explains, “a picture is worth a 

thousand words” and photographs taken at the shore are often far more valuable 

than lengthy written descriptions used to “set the scene” (George 1980). 

As with all methods of sampling, however, there is a trade-off between the 

advantages and disadvantages involved. The disadvantages are similar to those 

shared with most disciplines interested in sea-shore studies. For example, time is a 

limiting constraint, as most photographs need to be taken at low tide and indeed 
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the most effective photographic sampling is carried out during spring low tides, 

when the greatest area of intertidal habitat is exposed. Capturing images during 

these brief windows often complicates large-scale spatial studies, especially with 

limited resources (Murray et al. 2006). Furthermore, issues may arise with the detail 

that can occur due to the resolution of the photograph, as well as identifying taxa of 

a similar appearance, and problems with analysis may arise where the organisms 

are in high concentrations and/or stratified (Murray et al. 2006).     

There are, however, many advantages to the correctly applied photographic 

method: the greatest perhaps being that the images may be stored and used for 

further analysis at a later date. These stored images can also be kept on record and 

used to analyse changes that may have occurred over time. Photographs also have 

another advantage, in that they are more easily interpreted by people without 

scientific backgrounds that may not easily understand graphs or complicated 

figures (Murray et al. 2006). Further examples of the application of photographic 

techniques in marine biology include photographic surveys and photographic 

tagging, which has for many years been used in identifying whales, dolphins or seals 

(McConkey 1999). Photography has also proved useful as a tool for conducting 

population counts, such as on the West Coast, where seal populations are 

photographed from the air to determine breeding success (Griffiths et al. 2004). 

Aerial photography has also been used in conjunction with infra-red photographic 

techniques to determine the extent of kelp populations along the South African 

coast (Bolton and Anderson 1990).  

In South America, researchers used a specially encased camera to conduct 

short-term temporal studies on steep rocky intertidal slopes, in an attempt to 

increase the size and rate of sampling. They found this new method compared 
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favourably against other methods of non-destructive sampling (Moyses et al. 2007). 

This photographic method also produced very distinct advantages over other non-

destructive techniques, primarily that a greater area could be sampled faster. There 

were also economic benefits when compared to two other non-destructive 

estimation methods, namely point intersection and visual estimation, in that fewer 

sampling trips and a reduction in the number of people needed to carry out the 

survey resulted in reduced costs. Another marine repeat photography study 

compared fish caught off the Florida Keys over a period of 50 years, reporting 

changes in species composition as well as decreased sizes of the fish caught 

(McClenachan 2009).  

1.2.1 Repeat photography 

This photographic technique had its origins in the Alps, when in the late 1880s 

the geologist Sebastian Finsterwalder began using photography to document 

glaciers (Webb et al. 2007; Webb et al. 2010). However, use of repeat photography 

does not lie solely within the physical sciences, and has been equally useful for 

documenting ecological change over time (Bierman et al. 2005).  It soon found 

further uses in landscape studies, specifically related to the changing populations of 

plants. It has also been used to document changes in vegetation (Webb et al., 

2010). However, Webb et al. (2010) report that it was seldom used prior to the 1940s. 

After this period it enjoyed increased popularity as a technique for range 

management. Before the advent of photography biologists had to rely on drawings 

or paintings to illustrate their observations, but in 1951 Simpson used photography to 

match old landscape drawings made in the 1800’s (George 1980; Webb et al. 2010). 

Two botanists, Shantz and Turner, used repeat photography to document large 

changes that had occurred in plant populations of Africa by repeating the images 
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Shantz had taken in the early part of the 19th century on a trip from Cape Town to 

Cairo (Webb et al. 2010). Towards the end of the 1950s MacDonald used repeat 

photography to measure changes in vegetation cover as a proxy for changes in 

climate (Webb et al. 2007). Some of the first studies using the technique of repeat 

photography were in the field of geology. Using “then-and-now” images of glaciers 

Gilbert documented the changes that occurred in these slow-moving masses of ice 

(Bierman et al. 2005). Hastings and Turner first conducted large-scale unrestricted 

repeat photography surveys, which later gave rise to the Desert Laboratory Repeat 

Photography Collection (Webb et al. 2010). Most of these repeat photography 

studies have taken place in North America, but studies have taken place in South 

America, one such example being the Alpine of the Americas Project, and in Africa 

studies have been conducted in Kenya and South Africa (Muriuki et al. 2003; Rohde 

and Hoffman 2008). Even Antarctica has recently been the subject of a repeat 

photography study (Webb et al. 2010). 
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Chapter 2. Repeat photography of rocky shores in 

the Western Cape 

2.1 Abstract 

This chapter uses repeat photography to illustrate changes that have occurred on 

rocky shores in the Western Cape over the past hundred years. Changes are 

documented under four categories; changes in range, climate change, intertidal 

invasion and direct anthropogenic effects. Images were sourced from books, 

members of the public and subject specialists and were selected based on their 

suitability. The sites of the images were identified and repeat photographs captured. 

The images depict the slow but progressive easterly spread of the kelp Ecklonia 

maxima and the range contraction of the warmer-water mussel Perna perna. 

Evidence suggests that a changing climate is the major driver of both of these 

changes. No change in zonation due to changing sea levels was observed. 

However, the range contraction of P. perna is complicated by the introduction of an 

alien mussel, Mytilus galloprovincialis. Repeat photography shows the changes that 

M. galloprovincialis has caused on the intertidal community in Saldanha Bay. 

Another invasive organism, Balanus glandula, is shown to have greatly altered the 

community structure of the Blouberg intertidal zone. Also of interest is the degree of 

building development that has taken place along the shore. Repeat photography 

proved a useful tool for documenting changes that are separated by large amounts 

of time, and is recommended as a useful technique for the surveillance and 

monitoring of rocky shores.  

Keywords: Balanus glandula, Ecklonia maxima, historical study, Mytilus 

galloprovincialis, repeat photography, rocky intertidal zone, Western Cape. 
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2.2  Introduction 

In order to effectively manage our natural environment it is necessary to 

understand its current condition and how this condition has changed over time. To 

accurately describe their condition it is often useful to examine the past, so that 

present conditions can be compared with those in the past. It is also important to 

realise the damage past oversights have had, with a view towards preventing similar 

occurrences from happening in the future. Ideally we need to know what the 

system’s undisturbed baseline condition was. Trying to establish baselines is a 

challenging task, as it is not always possible to recall with accuracy the gradual 

changes over time. This has led to the term ‘shifting baseline syndrome’ being 

coined by Pauly (1995).  

This illustrated review examines four main categories of change on the rocky 

shores of the Western Cape with the aid of repeat photography. The subjects of 

interest are: changes in range, climate change, intertidal invasions and direct 

anthropogenic effects. 

These factors are all capable of bringing about changes in the state of the 

system and therefore altering ecological resilience (Gunderson 2000). Systems can 

be modified when previously neighbouring species experience a range expansion. 

Range expansions can occur in two ways; naturally, i.e. by the removal of certain 

geographical boundaries, possibly during times of geological stress due to plate 

tectonics, or changes in environmental conditions such as changes in climate 

(Grosberg and Cunningham 2001). The organism would then naturally over time 

colonise the newly available territory. Bolton and Anderson (1990) found that the 

single greatest environmental contributing factor to seaweed distribution, as well as 
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community structure, was sea water temperature. Interestingly Griffiths and Mead 

(2011) show that sea surface temperatures (SSTs) along the South African south 

coast are decreasing due to changing weather patterns interacting with unique 

upwelling systems. Along with this mean cooling trend, changes in kelp distributions 

have been observed, the cold-water species Ecklonia maxima experiencing a 

range expansion. Conversely the warm-water Perna perna, the brown mussel, has 

experienced an eastward contraction in its range along the south-west coast of 

South Africa (Griffiths and Mead 2011; Bolton et al. 2012). 

Little work has been done on the role of climate change on rocky shores 

within South Africa. However, internationally it has been proposed that the intertidal 

environment could be used as a proxy for climate change, by investigating changes 

in zonation, or shifts in traditional range of species (Mieszkowska et al. 2006). 

 In the marine environment species can be transported to new areas by man. 

This can be done unintentionally by transporting the organisms in ships’ ballast water, 

or via attachment to ships’ hulls (Robinson et al. 2005). Transportation can also be 

deliberate, as in the South African oyster industry, where spat or seed is imported in 

order to stock grow-out facilities. If the correct biological control protocols are not 

followed, this process can result in the import of more alien species (Grosberg and 

Cunningham 2001; Haupt et al. 2010). Whether the species are deliberately or 

accidentally introduced, alien species can have negative effects on the local biota 

(Ling 2008). The invasive mussel Mytilus galloprovincialis has outcompeted and to 

some degree displaced the indigenous mussels Aulocomya ater and Choromytilus 

meridionalis along South Africa’s West Coast and is considered South Africa’s most 

prolific intertidal invasive (Griffiths et al. 1992; Rius and McQuaid 2005; Robinson et al. 

2007; Simon-Blecher et al. 2008). Balanus glandula is an invasive barnacle that 
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occurs in large numbers and densities along much of South Africa’s West Coast. It 

was only recently identified in 2007 (Simon-Blecher et al 2007; Laird and Griffiths 

2008). 

Perhaps the most dangerous invasive species has been modern man, through 

the use of increasingly advanced technology and sheer numbers, we have had an 

impact on nearly all of the Earth’s biogeochemical cycles (Folke et al. 2004). Coastal 

development has very real effects on the neighbouring marine communities (Pillay 

et al. 2010). The institute for future studies published population statistics for the 

Western Cape in 1996, estimating that there were 3 659 871 people at that time 

residing in the Province, and forecasting that by the year 2026 that number would 

increase to 4 591 285 people (Haldenwang and Boshoff 1996). However, Statistics 

South Africa’s (2011) most recent population survey already places the population 

of the Western Cape at 5 287 863, or nearly 700 000 more people than was 

anticipated for a period 12 years into the future. All of these people require housing, 

sanitation, water and food. People, particularly those in coastal settlements, place 

strain on the near-shore marine environment (Airoldi et al. 2008). This is demonstrated 

by Angel et al. (2006), first documented the decline of dwarf eelgrass Nanozostera 

capensis in the Langebaan lagoon and how it affected the critically endangered 

mollusc Siphonaria compressa. Following on from this research Pillay et al. (2010) 

demonstrated that the loss of N. capensis has been the catalyst for large-scale 

ecosystem change. The loss of N. capensis, along with habitat degradation, 

destruction caused by prawn pumping and trampling, has had a dramatic negative 

effect on the benthic invertebrate community.  

Photography has, since its inception, been used for scientific research. It is an 

invaluable tool in conducting aerial surveys and has been used up the West Coast 



25 
 

of South Africa and into Namibia to conduct population counts of seals (Griffiths et 

al. 2004). It has also proved to be useful in mapping and conducting abundance 

estimates of kelp (Bolton and Anderson 1990).  

Repeat photography has for many years been used in range management in 

order to ascertain whether remedial actions are having the desired effect, for 

example reducing erosion or increasing an area’s biodiversity (Bierman et al. 2005). 

One of the earliest marine investigations that used repeat photography quantified 

the decline in the size of trophy fish off the Florida Keys (McClenachan 2009). Moyses 

et al. (2007) also used a rephotographic technique to measure changes on steep 

rocky slopes, though their time period was far shorter. Repeat photography of plants 

has been used since the late 1950s as a proxy for climatological data (Webb, et al. 

2007). In this chapter I attempt to use repeat photography of rocky shores to 

document changes in intertidal environments. By comparing these temporally 

separated images I illustrate, for the first time, the rate of change and impact that 

different natural and anthropogenic events have had on the biota of the coasts of 

the Western Cape.  
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2.3 Materials and methods 

Potential photographs were sourced from several different locations. 

Photographs of rocky shores were requested from subject specialists, as well as the 

general public by means of advertisements in either specialist monthly newsletters or 

by placing appeals in general public newspapers. The photographs were collected 

and assessed on the basis of their appropriateness to the project. Parameters used in 

the selection of each photograph differed, but included the age of the 

photograph, location, distinguishable features, access to the site and the possibility 

of reproducing the original image. The final set of images was selected so as to 

reflect a spread of the conditions that characterize the western and southern coast 

lines of the Western Cape. The images selected were in a variety of formats 

including black and white and colour prints, 35 mm black and white negatives, 35 

mm colour slides, and digital images. For ease of use and future editing the images 

were digitized by scanning the historical images on a Canon Canoscan 5600F as 

high resolution TIFFs with the following specifications: 300 dpi, 450 mm output size, 16 

bit/channel. Once the images had been scanned and archived the original 

material was returned to the owners.  

Prior to fieldwork, images selected to be rephotographed were printed out at 

A4 and placed in a file so that they remained relatively protected and were easily 

accessed during field trips. Repeat photography expeditions were carried out during 

spring low tide periods. During rephotography land-marks were identified from the 

past images and care was taken to align the photographs as closely as possible for 

accuracy of comparison. Due to difficult terrain in most locations, tripods were not 

utilized for this project. When the images were aligned a repeat photograph was 



27 
 

taken at the maximum resolution possible with one of several Digital Single Lens 

Reflex (DSLR) cameras. 

ADOBE® Photoshop® was used to adjust the images to similar dimensions 

(height was changed to 16 cm if in portrait, or width is changed to 16 cm if the 

images are landscape) and pixel density was set as 300 pixels/inch. The distance 

between two identical objects found in both images was measured. To yield two 

distances A (the largest) and B (the smaller distance). Distance A was divided by 

distance B and the resulting figure was multiplied by 16, to give a value of Z. The 

height or width of the image which contained distance B was then altered to the 

calculated value of Z. With images of the same size, alignment could be carried out 

by dragging the rephotographed image on top of the original photograph and by 

varying the opacity of the rephotographed image (layer) it was possible to achieve 

the greatest degree of overlap. Once aligned the rephotographed layer was saved. 

The rephotographed layer was then removed and the original image saved 

separately, making both images available for later examination. Percentage cover 

was estimated from these photographs, taking into account that not all areas within 

the photograph could be inhabited or built upon by the object under examination. 

 

The study sites were located between Marcus Island in the west and De Hoop 

Nature Reserve in the east (33.0427 S 17.9704 E – 34.4780 S 20.5139 E). The 

predominant focus of the photographs was on the rocky intertidal zone and in one 

section, the near shore and the terrestrial environment directly bordering the 

coastline. The study sites span two marine regions as depicted in Mead et al. (2011), 

those being the Cool-temperate region along the West Coast, and the Warm-

temperate region of the South Coast.  
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Table 1, Site names and locations 

Figure Site name GPS co-ordinates 

2.1 Oatland Point 34.2082 S 18.4611 E 

2.2 Wooley’s Pool 34.1326 S 18.4465 E 

2.3 Dalebrook 34.1244 S 18.4527 E 

2.4 St James 34.1190 S 18.4596 E 

2.5 Fick’s Pool 34.4222 S 19.2354 E 

2.6 Old Harbour, Hermanus 34.4203 S 19.2437 E 

2.7 Old Harbour, Hermanus 34.4203 S 19.2437 E 

2.8 De Hoop Nature Reserve 34.4780 S 20.5139 E 

4.1 Oatland Point 34.2082 S 18.4611 E 

4.2 Oudekraal 33.9837 S 18.3576 E 

5.1 Marcus Island 33.0427 S 17.9704 E 

5.2 Marcus Island 33.0427 S 17.9704 E 

5.3 Blouberg 33.8063 S 18.4648 E 

6.1 Bantry Bay 33.9280 S 18.3756 E 

6.2 Clifton 33.9331 S 18.3775 E 

6.3 Llundudno 34.0048 S 18.3398 E 

6.4 Kalk Bay 34.1290 S 18.4482 E 

6.5 Muizenberg Corner 34.1090 S 18.4689 E 
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Figure 1, Map of the Western Cape showing sites  

Marcus Island 
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2.4 Results and discussion 

Changes seen in the images can be categorised as falling under four 

headings 1) Changes in range, 2) Climate change, 3) Intertidal invasion and 4) 

Direct anthropogenic effects. Each topic is treated separately below. 

2.4.1 Changes in range 

The following images depict changes in range and density of cold water kelp 

species. The images are arranged from the western-most site of observable change, 

moving eastwards. Figures follow a left to right temporal order, the original images 

are located to the left with the more recent rephotographed image to the right. 
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Photo plate 1 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2, Wooley’s Pool, Left: Griffiths 1992; Right: Griffiths 2011 

Figure 2.1, Oatlands Point, Top: Morgans 1950; Bottom: Griffiths 2011 
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Figure 2.4, St James Top, left: Burman1950; Top right: Griffiths 1991; Bottom left: Griffiths 2011 

(Circle indicates evidence of kelp heads) 

Figure 2.3, Dalebrook, Left: Griffiths 1980; Right: Griffiths 2011 
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Figure 2.5, Fick’s Pool Hermanus, Left: Hermanus Old Harbour Museum, Approximately 1920; Right: Reimers 

2012 

Figure 2.6, Old Harbour, Hermanus, Left: Hermanus Old Harbour Museum, approximately 1920; Right:  

Reimers 2012 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7, Hermanus Old Harbour, Left, Hermanus Old Harbour Museum, approximately 1920; 

Right: Reimers 2012 

Figure 2.8, De Hoop Nature Reserve Top: Griffiths 1991; Bottom: Reimers, 2012 
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Three general observations can be made from the previous figures, they are 

1) that kelp has increased its density, 2) extended its range in recent years and 3) 

there are observable changes in the community structure of the kelp species.  

Figure 2.1 shows kelp was present in 1950 at Oatlands Point. However, it was 

found exclusively in the intertidal zone, visible along the edges of large boulders, it 

has since become established in the subtidal zone as well. The kelp has increased 

from 0% cover to approximately 40% cover in the subtidal zone. These changes were 

recorded 60 years apart.  

In Figure 2.2 the densification of kelp has increased from 5% to 80% at present. 

Present in the historic photograph are juvenile E. maxima in the intertidal zone. Kelp 

previously was not present in the subtidal zone; it now has a coverage of 70%. The 

Pyura stolonifera or redbait appears in both images and has maintained a high 

density, even though it is now heavily crowded by E. maxima. These images are 

separated by 19 years.   

Species other than kelp are experiencing range shifts. In Figure 2.3 it can be 

seen that the mussel P. perna was once common in False Bay (Bright 1937). It has 

experienced a range contraction and is now only found in small isolated adult 

populations in False Bay. The 1980 image is dominated by P. perna with small clusters 

of Mytilus galloprovincialis around their bases. While the most recent image show 

effect of the cooling climate on P. perna, it is now only found in two locations in very 

small numbers at Dalebrook and Bailey’s Cottage as small isolated colonies 

surrounded by M. galloprovincialis. 

Figure 2.4 is a time series of three photographs of St James, spanning 60 years. 

This site is located 1.9 km away from Wooley’s Pool (Figure 2.2). If the kelp bloom was 
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a cyclical event it is apparent that it does not take place on a decadal cycle. 

Instead it the density gradient and time line of the matched photographs of the kelp 

seems to support that there has been be a slow shift around the Bay, originating 

from somewhere near Cape Point and having moved through the area of 

Simonstown,  Fish Hoek and recently having established itself at Wooley’s Pool. It 

would appear that it has now reached St James; the kelp being highlighted in the 

circle in the most recent image. Bailey’s Cottage and Muizenberg remain free of 

kelp at the time of writing, however, given time E. maxima may continue to expand 

around False Bay in that direction. 

 Kelp has also spread further along the South Coast, as seen in Figure 2.5, it is 

a relatively recent arrival to Hermanus. In the original image from the 1920s no kelp is 

visible, however in the repeat image there is a 20% increase in the cover of E. 

maxima. The high density of the kelp would suggest that the kelp is not a new arrival 

in Hermanus. Further evidence of the range expansion of the kelp in this area is seen 

in Figure 2.6, which shows an increase in the coverage of kelp from none in the 

original photograph to 70% coverage in the near-shore environment. 

Further along the South Coast in the De Hoop Nature Reserve, 116 km away 

(in a straight line) from the Old Harbour in Hermanus, the same kelp species E. 

maxima is also present. The images in Figure 2.8 are taken over a shorter period of 

time (21 y). The kelp has gone from 0% cover to 20% cover at a low density. These 

factors would indicate that kelp is a new arrival to this area of coastline, as has 

recently been documented by Bolton et al. (2012).  

Many abiotic factors may affect the growth of kelp; these include nutrient 

concentrations, wave exposure, substrate and exposure to air and turbidity. These 

factors play a greater role in smaller scale distribution patterns (Bolton and Anderson 
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1990). Over larger spatial scales it has also been suggested that biological 

interactions may affect the composition of seaweed communities, however 

according to Bolton and Anderson (1990), the largest contributing factor to 

seaweed community composition is sea surface temperature. It is therefore most 

likely that this local upwelling system, as modelled by Rouault et al. (2010) and 

further described by Blamey et al. (2012), play a large role in the above 

documented changes in densification and range of E. maxima. The cooling trend 

closer to shore, most likely due to increased upwelling as well as the warming of the 

Agulhas further offshore due to changes in the transport of the system, are large 

scale shifts in oceanic climate capable of influencing biotic communities, often in 

conjunction with other drivers (Rouault et al. 2009; Rouault et al. 2010; Blamey et al. 

in press). The inshore cooling may also have contributed to the range contraction of 

the traditionally warmer-water mussel species P. perna.  As can be seen from Figure 

3 the cooling trend extends along the South Coast up until Port Elizabeth and up the 

West Coast of South Africa to approximately 32˚S (Rouault et al. 2010). This roughly 

coincides with what is observed in the Figures 2.1–2.7.  

Other contributing factors to the increase in kelp densification could be, the 

recent range shift of the Cape Rock Lobster, Jasus lalandii, whose arrival in new 

areas along the South Coast has resulted in a decrease in herbivore biomass, 

particularly sea urchins, which graze on kelp holdfasts. The presence or lack thereof, 

of grazers can affect the abundance of kelp. It has been found that in general 

grazers decrease the abundance of algae present in their communities depending 

on if they are general or specific grazers. Intermediate grazing behaviour can 

stimulate the growth of macroalgae while high levels of grazing may decrease 

abundance (Zeeman et al. 2012).  



38 
 

Figure 3, Average SST per decade between 1985 and 2009, after Rouault et al. 

(2010) 

 The loss of these grazers due to predation by J. lalandii has contributed to a 

subsequent increase in overall macroagal biomass. However, it was seen that not all 

kelp species increased in biomass. Laminaria decreased in biomass, while E. maxima 

experienced an increase in biomass (Blamey et al. 2010). The cooling trend brought 

about the by the increase in upwelling may have only been a secondary factor to 

the increase in nutrients which would have resulted, allowing E. maxima to colonize 

areas further east along the South Coast than it was previously able to, the opposite 

to what has occurred in Australia (Johnson et al. 2011). 

The presence or lack thereof, of grazers could also play a role in the 

abundance of kelp. It has been found that in general grazers decrease the 

abundance of algae present in their communities depending on if they are general 

or specific grazers. Intermediate grazing behaviour can stimulate the growth of 

macroalgae while high levels of grazing may decrease abundance (Zeeman et al. 

2012).  
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2.4.2 Climate Change 

Photo plate 2 is comprised of images attempting to demonstrate the 

biological reaction to global climate change. It is linked closely to the previous 

section as the range shifts witnessed there are most likely a result of the cooling 

climate. In this section we take a closer look at another aspect of climate change. 

We attempt to determine the effect of sea level rise on the zonation of the intertidal 

zone. 
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Figure 4.1, Oatlands Point, Top: Morgans 1950; Bottom: Griffiths 2011 

*Scale is given by the foot marker in the top image 

Photo plate 2 
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Figure 4.2, Oudekraal, Top: Bright 1937; Bottom: Griffiths 2011 
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As illustrated above, the expansion in the range of the cold-water kelp 

species, E. maxima, as well as the range contraction of the brown mussel P. perna 

are most likely associated with the cooling trend off the South Coast (Rouault et al. 

2010; Blamey et al. 2012). This, however, may be a change in regional climate and 

therefore not associated with global climate change. It is difficult to conclusively put 

any ecosystem changes down to changes in climate, when there may be so many 

other potential contributing factors (Mieszkowa et al. 2006). Other drivers can 

include climatic conditions, presence of habitat modifying organisms as well as 

anthropogenic effects (Grosberg and Cunningham 2001; Griffiths et al. 2004; Ling 

2008) 

Changes in vertical zonation due to sea level rise are able to be estimated 

using this technique. An argument for changes in zonation as a proxy measurement 

of sea level rise could be made, as intertidal organisms would need to re-establish 

themselves in the optimum competitive position. Mather et al (2009) reported figures 

of 1.48 mm y-1 increase in sea levels along the southern coast of South Africa 

between the period of 1957 and 2006. If this rate had been constant over the 74 

year period between the photographs the visible change in zonation should have 

reflected a height difference of nearly 11 cm.  

Figure 4.1, images are separated by 60 years. There have been changes in 

distribution and community structure of the seaweeds present. The intertidal zone 

has seen an increase in foliose seaweed cover from 60% to nearly 100%. However 

seaweed appears to have lost 20% of its upper zonation on the exposed rock face 

and instead clumps of M. galloprovincialis now exist in this area, demonstrating its 

ability to modify community structure. Other species of seaweed have increased in 

the subtidal zone, from three plants in the subtidal zone to ten kelp heads 



43 
 

representing a 300% increase. It is difficult to compare the images in Figure 4.1 as the 

match is not exact. However, it does not appear that there has been an upward 

shift of intertidal organisms due to proposed sea level rise.  

The historical image in Figure 4.2 shows a particular rock at the Oudekraal site, 

this image was published in 1937, decades prior to the invasion of M. 

galloprovincialis. Small Mediterranean mussels now cover 40% of the intertidal rock 

surface. The kelp density has also increased by 50% to 70% in the time between 

photographs. In Figure 4.2, if the distance between the upper limit of coralline algae 

(marked here by the black line) and the lowest point of the crack in the rock 

(indicated by the vertical arrows) are measured, no change in vertical zonation has 

taken place. 

Observations may be complicated in this instance by the arrival of invasive 

intertidal organisms. The prime culprit is M. galloprovincialis. Due to its ability to 

survive greater periods of emersion, combined with other competitive advantages, 

it has altered community structure in the subtidal zone (Robinson et al. 2007). 

However the greatest driver of zonation change in this instance was expected to be 

the rising sea level.  
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2.4.3 Intertidal invasions 

The following images all deal with the topic of intertidal invasions, the images 

focus on two invasives, the Mediterranean mussel, M. galloprovincialis and the 

barnacle B. glandula.  M. galloprovincialis is the most visually abundant intertidal 

invasive organism along the South African coast. It arrived in Saldanha Bay around 

1979.   B. glandula was only documented in 2007, though there is evidence to 

suggest it had been present for at least a decade before that (Laird and Griffiths 

2008; Simon-Blecher et al. 2008).  

This section is divided into two parts: 

Photo plate 3a contains images of M. galloprovincialis followed by analysis and 

interpretation. Photo plate 3b contains the image showing B. glandula. 
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Photo plate 3a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1, Marcus Island, Left: Griffiths 1989; Right: Griffiths 2012 
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Figure 5.2, Marcus Island, Above: Griffiths 1981; Below: Griffiths 2012 
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Figure 2.3 is also relevant to this section, M. galloprovincialis has altered the 

community structure of the West and Southern coasts of South Africa. It has 

superimposed itself on the intertidal community. There are reports of partial 

displacement of the indigenous mussel species along the West Coast (Robinson et 

al. 2007). It has also impacted on the zonation of the shore, due to its ability to 

tolerate longer emersion times and to take advantage of a higher shore line position 

(Robinson et al. 2007). For a full investigation into the consequences of the M. 

galloprovincialis invasion in South Africa, see Robinson et al. (2007). 

Figure 5.1 shows an increase in the densification of M. galloprovincialis on 

Marcus Island between 1989 and 2012, from a patchy 30% over the slope to its 

current 80% sheet-like cover. Marcus Island is located in Saldanha Bay where M. 

galloprovincialis was first reported around 1979. The initial images from Marcus Island 

show the extent of the invasion after a single decade (Branch and Steffani 2004). It 

can be seen that the mussels have already established themselves by that time and 

it appears that they are being confined by the limpets which may have slowed their 

spread over the rock face somewhat.  

In the repeat image of Figure 5.2 the densification of mussels on Marcus Island 

is very apparent. From a coverage, in the initial image, of 20% mostly confined to the 

trench and with isolated clusters on the flatter left rock surface and a small patches 

to the right. It is also noticeable that the M. galloprovincialis are largely surrounded 

by limpets. In the most recent image the coverage is now estimated at 70% of the 

exposed rock surface. The limpet population also appears to have declined. The 

spread of M. galloprovincialis has had other consequences. From the repeat image 

algae, Ulva and other seaweeds are seen to have taken advantage of the 

increased surface area and perhaps the grip that the mussel shells provide to 
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increase their coverage on the slope. The loss of limpets has also contributed to the 

increase in the Ulva sp present on the rock surface. Other observations include an 

increase in the kelp present in the subtidal zone.  

The second invasive species examined by repeat photography is the 

barnacle B. glandula, native to the North American Pacific. It is not known when it 

arrived, although there is photographic evidence of it as far back as 1992 (Laird and 

Griffiths 2008). 
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Photo plate 3b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3, Blouberg, Left: Griffiths 1981; Right: Griffiths 2011 
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Figure 5.3, these images were taken at Blauberg, just north of Cape Town and 

show two invasive species to be abundant. First is M. galloprovincialis which has 

spread south with the prevailing ocean currents, and the second species is B. 

glandula, the North-east Pacific acorn barnacle. B. glandula had not yet arrived in 

South Africa in 1981. Three decades later it, along with another invasive, M. 

galloprovincialis, dominate the intertidal zone at Blauberg. B. glandula covers 50% of 

the exposed rock surface with M. galloprovincialis covering a further 10%. B. 

glandula is found at its highest densities at Moullie Point and Blauberg (Laird and 

Griffiths 2008). In the most recent survey B. glandula has been found along 400 km of 

South Africa’s West Coast, from Elands Bay through to Misty Cliffs. For greater detail 

on the abundance and range of B. glandula see Laird and Griffiths (2008). 
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2.4.4 Direct anthropogenic effects 

Direct anthropogenic effects refer here primarily to coastal development. 

These next images aim to show how rapidly coastal development has taken place in 

Cape Town and its surrounding coastal towns. Europeans started a permanent 

colony in Cape Town in 1652, prior to which man had been present in the Cape 

since the early Stone Age. Prehistoric evidence from shellfish middens indicates that 

exploitation of coastal resources was intensive and widespread, though lower 

population numbers and rudimentary technology likely tempered their impact on 

the intertidal zone (Siegfried et al. 1994; Griffiths et al. 2004). The following images 

capture the changes that have occurred in the development of the coast over the 

last century. 
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 Photo plate 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1, Bantry Bay, Left UCT archives 1890; Right: Griffiths 2011 

Figure 6.2, Clifton, Left: UCT archives 1899; Right: Griffiths 2011 
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Figure 6.4, Kalk Bay, Left:  Burman 1900; Right: Griffiths 2011  

Figure 6.3, Llundudno, Left: date unknown ; Right: Griffiths 2012  
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Figure 6.5, Muizenberg, Top: Walker, date unknown; Bottom: Griffiths 

2012 
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Bantry Bay in 1890 (Figure 6.1) was a sparsely-populated headland that has 

undergone intensive development, so much so, that from a cover of 30% comprised 

of low story, low density houses, all available area has been transformed into high 

rise, high density developments covering 90% of the non-vertical ground. This has 

changed the structure of the shoreline, with the erection of foundations and the 

deposition of soil and rocks in order to build roads. Retaining walls have been built 

and the natural slope has been engineered and modified. The gradual transition 

from the ecotone, which is the rocky shore, to the terrestrial hill side has been lost, 

potentially influencing the flow of nutrients between the two areas.  

Clifton Bay, Figure 6.2, this stretch of coastline has been largely developed for 

residential and commercial purposes. The original image shows no development 

save for what appears to be a dirt road along the base of the mountain side. 

Intense development has taken place over 112 years, 40% of the visible land has 

been transformed with the major restricting factor being that the upper slopes 

belong to the Table Mountain National Park. Development along the coast can 

have many impacts on the near shore environment; the construction of walls where 

dunes were once present can result in the shortening of beaches. Reclamation of 

land can result in the destruction of local communities (Chapman and Underwood 

2006). Also associated with increased development is the threat of increased 

pollution, which may affect community structure of the near-shore environment 

(Connell et al. 1999). 

Figure 6.3, Llundudno, an exclusively residential suburb was founded in 1903. 

The development here has been less intensive upon the shoreline as the views and 

beaches were of prime attraction. In the first image no development is visible; 

however in 2012 buildings occupy 30% of the available land in the photograph. 
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Development can impact the run-off regime. Increasing the rate at which water 

would flow between the terrestrial and the coastal environment. Storm-water drains 

and outflows can result in point-source pollution with the adsorption and retention of 

contaminants from land and transport into the coastal waters (Inland and Coastal 

water Quality Committee Annual Report 2011). 

Figure 6.4 was taken of Kalk Bay. The initial image was taken in 1900 and the 

repeat image in 2011. This area has been the site of human development for many 

years. The increase in the human population brings with it the threat of increased 

pollution. Kalk Bay harbour was constructed in 1918 and functions today as a port for 

small fishing craft. Altering the shape of the natural bay can change circulation 

patterns and increased boat traffic brings with it the threat of increased pollution. 

Muizenberg, Figure 6.5, has undergone large scale development, similar to 

Camps Bay. Development below Boyes Drive has prevented an exact repeat image 

being taken, making estimation of the developmental changes difficult to gauge. 

The land behind the changing rooms in the original photograph was and still is today 

a wetland area. The amount of development in this area has certainly altered the 

water flow regime between the terrestrial and coastal environment, necessitating 

the channelling of water away from the foundations of the buildings now present. 

The Inland and Coastal Water Quality Committee Annual Report (2011) states 

that 95% of bathing areas along the False Bay coast complied with the required 

water health standards for indicator organisms while the Atlantic coastline had a 

compliance of 75% of bathing areas meeting the indicator organism standards. The 

report further mentions storm water outlets are sources potential point sources of 

pollution. 
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Chapter 3. Conclusion 

Several distinct categories of changes to the rocky intertidal zone have been 

observed in these repeat photographs. These include: changes in range, changes in 

the community structure as well as changes to the near shore terrestrial environment 

due to increased development. Changes in zonation were also investigated. 

Increases in both the densification and extent of the range of the cold water 

kelp species are made visually apparent here. E. maxima has increased its 

penetration into False Bay by as much as 14 km around the Bay (10 km in a direct 

line), along with its range expansion it has increased in coverage in some areas by 

as much as 80%. While the traditional range termination of E. maxima kelp beds is 

documented as Cape Agulhas, along the south coast it has increased its cover from 

between 20% to 70%. It has now been photographed as far as De Hoop Nature 

Reserve, 61 km further than expected (Anderson et al. 2010; Bolton et al. 2012). 

These changes are most likely a result of changes in nutrient supply associated with 

increased upwelling and over all changing climatic conditions in the southern 

Benguela and Agulhas systems (Rouault et al. 2009; Rouault et al. 2010; Blamey et al. 

2012). Increased competition from the invasive M. galloprovincialis, as well as the 

changing climatic conditions are likely the cause of the decrease in the abundance 

of the warm-water mussel P. perna and its range contraction eastwards away from 

False Bay. These observed changes in ranges are complicated by their dependence 

on their ecological communities and are also subject to biological interactions 

which can create larger community-scale disturbances. For example, the 

community changes brought about by the invasion of J. lalandii and the 

corresponding decrease in herbivores which have contributed to the increased 
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biomass of E. maxima (Blamey 2010). A result of climate change is sea level rise 

which is expected to alter vertical zonation. However we observed no changes in 

zonation attributable to sea level rise. 

Further disturbance pressure can result from the introduction of alien invasives, 

such as M. galloprovincialis and B. glandula. The loss of limpets and increase in 

seaweed cover on Marcus Island bears witness to some of these changes, M. 

galloprovincialis has increased its cover from 30% to 80% cover of the available 

intertidal habitat and provided a surface for seaweeds to increase its purchase 

further down the shore. B. glandula now occupies 50% of the rock surface in 

Blauberg. Furthermore changes in the zonation of the intertidal zone have occurred 

due to the introduction of these species.  

The intertidal zone can also be affected by development along the shore. At 

all sites mentioned under anthropogenic changes at least 30% of the natural 

environment had been modified, and the most extreme change being 

documented in Bantry Bay where 90% of the available land had been developed. 

Changes in runoff regimes, as well as sewage and storm-water outfall can affect 

water quality leading to changes in benthic communities and harmful algal blooms.  

The changes as recorded here visually, have been documented previously, 

but the impact of visual aids cannot be denied. This study adheres to the old adage 

that a picture is worth a thousand words. Any of the sections above could be 

investigated and quantified in and of themselves, and indeed do deserve to be. The 

use of photographic documentation is demonstrated. Many questions still remain, 

such as, what are the associated changes with the change in range of E. maxima? 

What environmental factors are driving these changes? Very little work has been 

done on the B. glandula threat, and what its real impact has been on the rocky 
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shore environment. Repeat photography, such as this, allows for rapid sampling and 

the compilation of images over years could aid in detailing the changes rocky 

shores are undergoing. It is a tool that has been extensively utilized in terrestrial range 

management and could, with correct site selection and an annual or seasonal 

commitment to photographic sampling, be used to aid in the management of rocky 

shores.  

There is also potential for developing a rapid assessment protocol, if 

percentage cover could be correlated with physical sampling techniques, the use 

of photography after pollution spills or large storms could be used to estimate the 

damage to the biota of the near shore environment. 
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