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Abstract 

In the arid African savanna, the limited availability of water strongly affects plant productivity, but 

other key drivers of vegetation dynamics, such as herbivory and fire, are usually considered to have 

a relatively minor impact. The main purpose of this study was to characterise the spatial and 

temporal pattern in plant productivity in the 100 000 hectare Tswalu Kalahari Reserve (TKR) in the 

semi-arid Northern Cape and relate the observed changes to potential drivers using medium spatial 

resolution of MODIS Enhanced Vegetation Index (EVI) time series data (16 day, 250 m) from  

2000 to 2015. 

The time series of EVI for the past 16 years in TKR presented a highly seasonal pattern which 

fluctuated between years. A composite of annual small integrated value of EVI images highlighted 

spatial and temporal heterogeneity of plant productivity in the area. The EVI value was mainly 

influenced by rainfall and effect of fire and herbivory was considered to be minor. These 

observations confirmed the extreme variability of plant productivity in the drylands in the summer 

rainfall region of South Africa. Additionally, most of the values concerning the phenometrics of 

EVI differ significantly among vegetation types. This suggests that the structure and function of the 

vegetation determine plant productivity as well as their being a possible effect of soil property and 

reflectance. The trend in plant productivity computed by residual trend analysis (RESTREND) 

detected a significant positive trend in plant productivity in the east and south west of TKR, which 

overlapped with shrub-dominated vegetation, providing evidence for possible ongoing bush 

encroachment in these areas. On the other hand, a negative trend was detected in some locations in 

the west. The data generated from MODIS EVI and the small integrated value of EVI using 

TIMESAT produced biologically interpretable results. However, the correlative relationship 

between the EVI derived from Landsat Operational Land Imager (OLI) and plant cover estimated in 

the field was poor or not significant and needs to be examined further.  

The information obtained from this project will help to guide reserve management. The extreme 

variability of plant productivity needs to be considered when making management decisions.  Also, 

areas where change was detected require further study including validation of the satellite derived 

data, field based species level surveys, and a long-term, ground-based vegetation monitoring.  
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1 Introduction  

1.1 The Dynamics of Vegetation and Degradation in Semi-arid Regions 

In drylands, the limited availability of water strongly affects plant productivity. This has led to the 

‘pulse-reserve’ theory for dryland dynamics (Schwinning et al. 2004; Wessels et al. 2007; 

Wistebaar 2008; Collins et al. 2014). This theory suggests that rainfall triggers a pulse of vegetation 

growth which in turn results in a reserve of carbon and energy in the form of organic matter. These 

relationships are influenced by the timing and amount of rainfall, as well as soil type and the plant 

functional groups present (Reynolds et al. 2004). Other key drivers of vegetation dynamics, such as 

herbivory and fire, are usually considered to have a relatively minor impact on dryland ecosystem 

dynamics because their impacts are thought to be masked by the erratic rainfall which characterises 

dryland environments. The non-equilibrium concept of rangelands suggests that where rainfall 

variability is high, degradation caused by herbivory is relatively low because herbivore populations 

collapse during drought (von Wehrden et al. 2012). Likewise, a meta-analysis of the key drivers of 

African savanna dynamics indicated that disturbances such as fire and herbivory rarely regulate 

woody plant cover where mean annual rainfall is below 350 mm (Sankaran et al. 2005). 

However, even in areas with high rainfall variability degradation may occur if water and other key 

resources such as supplemental fodder are available during periods of drought, because herbivores 

can utilise these resources (von Wehrden et al. 2012). Indeed, many studies have indicated 

degradation caused by overgrazing in rangelands in arid and semi-arid regions. Vegetation change, 

bush encroachment, and soil erosion are all examples of the consequences of rangeland degradation 

due to excessive grazing pressure (Hoffman & Todd 2000; Tongway et al. 2003; Gillson & 

Hoffman 2007; Han et al. 2008; Wistebaar 2008).  

Processes of change in species composition and vegetation structure due to the introduction of 

livestock farming have been documented. For example, Parsons et al. (1997) reported a difference 

in vegetation structure and function between game reserves, commercial livestock farms, and 

communal lands in semi-arid north-western South Africa. An experimental study showed increased 

shrub abundance following the introduction of a high density of livestock in western Botswana 

(Skarpe 1990). Wasiolka & Blaum (2011) compared species richness and plant cover between a 

protected area and several livestock farms in the southern Kalahari, and found higher shrub cover 

but a lower proportion of perennial grass cover, herb cover and herb species richness in the 

livestock farms. Comparison of rangeland condition across six sites in the arid and semi-arid 

regions in South Africa confirmed the effect of heavy grazing on species composition that often 
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resulted in a decrease in foraging quality of grass and an increase in annual species (Rutherford & 

Powrie 2013). 

These findings imply that there is a direct, density-dependent influence of herbivory on vegetation 

due to a change in feeding behaviour and intensity of grazing in drylands. As suggested by 

Hempson et al. (2015), rainfall and herbivory interact to determine the dynamics of plant 

productivity in arid and semi-arid rangelands and trajectories of vegetation change will vary in 

response to land use impacts. 

 

1.2 The Use of Remote Sensing Data for Monitoring Dryland Environments  

Understanding the spatial pattern and process of how land use effects the environment is one of the 

key questions in landscape ecology. Improved accessibility to remote sensing data and analytical 

software packages have enabled long-term and large-scale ecological monitoring, including land 

use change, plant productivity, and fire activity (e.g. Palmer & Fortescue 2004; Pettorelli et al. 

2005; Pfeifer et al. 2012; Lausch et al. 2013). In particular, vegetation indices (VI) derived from 

satellite Earth Observation (EO) data have been used in a number of studies because of their direct 

correlation with plant productivity (Pettorelli et al. 2005). Examples of the applications of VI 

include the monitoring of net primary production (NPP) to evaluate the long-term trend of plant 

productivity (Fensholt & Rasmussen 2011; Sjöström et al. 2011; Davis 2012; Mbow et al. 2013), to 

assessments of degradation (Wessels et al. 2007, 2008; Wistebaar 2008; Fensholt et al. 2013; Eckert 

et al. 2015), to detection of vegetation change (Palmer & van Rooyen 1998; Jamali et al. 2014; 

Dubovyk et al. 2015), and to mapping and the description of biomes (Wessels et al. 2011). Recently, 

a growing number of studies have employed Leaf Area Index (LAI) and fractional 

Photosynthetically Active Radiation (fPAR) developed from EO data for similar purposes, 

including to understand and model plant productivity (Palmer & Yunusa 2011; Palmer et al. 2015) 

and to assess degradation (Bennett et al. 2012). EO data, with its extensive spatial coverage and 

historical archives, can provide crucial information for ecosystem management which circumvent 

the logistical challenges of conventional, field-based techniques.  

However, the use of EO data for monitoring vegetation in arid and semi-arid area has its own set of 

challenges. Firstly, the Normalised Difference Vegetation Index (NDVI), which is the most 

commonly used VI, is sensitive to the background ‘noise’ generated by the soil, particularly in the 

sparsely vegetated environments which characterise many arid and semi-arid areas (Huete et al. 

2002; Pettorelli et al. 2005). To overcome this weakness, several alternative vegetation indices have 



3 
 

been developed for drylands (see methods for details). Secondly, to isolate the influence of drivers 

other than rainfall (i.e. human-induced land degradation) is challenging, because plant productivity 

is strongly influenced by the erratic rainfall of dryland environments (Wessels et al. 2007; Davis 

2012). Several techniques have been developed to identify anthropogenic impacts by removing the 

effect of rainfall, such as Rain-use efficiency (RUE) (Wessels et al. 2007; del Barrio et al. 2010; 

Fensholt & Rasmussen 2011) and residual trend analysis (RESTREND) (Wessels et al. 2007, 2012; 

Davis 2012), but their application has met with mixed success. Another difficulty occurs in 

interpreting the outcome of trend analysis. Because these EO data-based techniques define 

degradation as a change in plant productivity, the change that is detected does not always 

correspond to change in species or functional types (van Rooyen 2000). Therefore, selecting 

appropriate indices and techniques, as well as understanding the capabilities and limitations of EO 

data is necessary for vegetation monitoring in arid and semi-arid regions. Furthermore, an 

understanding of the ecology and vegetation dynamics of the region in response to rainfall and 

herbivory is also important as this helps in the interpretation of the patterns exhibited in the EO data. 

 

1.3 Vegetation and Degradation in the Kalahari  

The Kalahari is a generally flat and dry, sand-dominated area located in the interior of central and 

southern Africa. Broadly, the vegetation is classified as savanna, covered with a limited number of 

species of grass, shrubs and sparse trees (van Rooyen & van Rooyen 1998). The land surface is 

dominated by aeolian soil of low nutrient status (Wang et al. 2007). Annual rainfall is highly erratic 

but over 80% falls between October and April (Sporton & Thomas 2002). The occurrence and 

impact of fire is spatially heterogeneous but occurs least in the driest southwestern region of the 

Kalahari and increases with rainfall (van der Walt & le Riche 1984; Thomas & Paul 1991).  

Although the Kalahari is a hot and dry climate for humans, archaeological evidence suggests that 

there has been a long history of people in the region dating back to the Early Stone Age >100,000 

years BP. It is assumed, however, that human impact on the environment was not significant before 

the arrival of domestic animals in the region ca. 2000 years ago. Thereafter, as the human and 

livestock populations grew, their influence on the Kalahari environment is thought to have 

increased while exploitation expanded rapidly following the establishment of trading routes with 

European settlements to the south and east of the region from the 19th century onwards (Sporton & 

Thomas 2002). In the nineteenth century, the area experienced major changes in land use and the 

adverse effect on the environment became apparent. This included a decrease in the number of large 

mammals including elephants and rhinos, the spread of cattle farming enabled by the establishment 
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of permanent wells, a reduction of surface water and wetland environments, and a change in 

vegetation most notably an increase in woody shrubs and trees, a phenomenon known as bush 

encroachment (Thomas & Paul 1991). 

Today, livestock farming is one of the major industries in the southern Kalahari, and the area is 

comprised largely of fenced rangelands with a few large protected areas (Sporton & Thomas 2002). 

The degradation of rangelands caused by selective overgrazing has been a major concern in the 

region, because of its potential negative impact on carrying capacity and productivity. Degraded 

rangelands typically shift from being dominated by perennial grasses to unpalatable woody species, 

or in some cases to annual grass species only. Previous research has shown that overgrazing 

facilitated an increase in shrub species such as Rhigozum trichotomum (van Rooyen 2000), 

Crotalaria cf. spartioides (Rutherford & Powrie 2009), and Senegalia mellifera and Grewia flava 

(Skarpe 1990), while several species of perennial grass became locally extinct, with a concomitant 

reduction in species richness (Rutherford & Powrie 2010). Additionally, the trampling of vegetation 

and the redistribution of nutrients by animals often causes degradation. For example, circular 

patterns of vegetation characterised by bare soil, annual plants, woody shrubs and grasses are often 

associated with the areas around artificial water point (Jeltsch et al. 1997a). Once degraded 

rangelands remain degraded for many years without human intervention, because the loss of 

vegetation cover triggers a positive feedback process which prevents recovery of the vegetation 

(Jeltsch et al. 1997b; van Rooyen 2000). In this sense, degradation of the Kalahari environment is 

irreversible and because of this the region should be considered sensitive to overgrazing. 

 

1.4 The Use of Satellite Earth Observation data for Vegetation Studies in the Kalahari  

Given the ecological and economic importance of rangelands, as well as the extensive spatial scale 

of the region, several studies have employed satellite EO data to monitor and assess veld condition 

in the central and southern Kalahari.  

Earlier studies reported that satellite-derived NDVI may not be well correlated with the cover of 

vegetation as measured in the field. Palmer & van Rooyen (1998) found that the highest NDVI 

values were recorded in areas with contrasting amounts of vegetation cover. For example, high 

NDVI values were found in areas with high woody shrub cover as well as in areas with low grass 

cover such as on the crests of dunes. van Rooyen (2000) detected a significant negative correlation 

between plant cover and NDVI computed from Landsat TM. He argued that the high iron oxide 

content in the Kalahari sand was the cause of these perplexing trends and concluded that NDVI is 
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not a reliable indicator of vegetation productivity in the Kalahari. However, a recent study used 

MODIS derived time-series NDVI data to understand vegetation dynamics in central Botswana and 

effectively outlined vegetation trends in relation to the potential drivers (Mishra et al. 2015a). 

Furthermore, multispectral bands from Landsat data have also been successfully used to estimate 

vegetation cover. Thomas & Leason (2005) found a significant negative correlation between plant 

cover and TM3 reflectance values in the dry season in the Kgalagadi National Park in South Africa, 

and determined vegetation cover using this relationship. Ringrose & Matheson (1996) identified the 

extent of bare ground around rural villages in Botswana using multiband Landsat TM data. 

However, as for NDVI, identifying vegetation cover by contrasting ‘green’ and soil reflectance 

values using the red-infrared band is not reliable in sparse vegetation due to the noise from bare 

ground. Notwithstanding this problem, the use of multispectral bands did allow for the 

differentiation of reflectance values between different vegetation and land cover types (Thomas & 

Leason 2005). 

More recently, the use of modified VI for sparsely vegetated arid and semi-arid areas, such as the 

soil adjusted vegetation index (SAVI) and the enhanced vegetation index (EVI), have shown 

encouraging results in several vegetation studies. For example, Hüttich et al. (2009) detected 

characteristic phenological patterns of plant productivity represented from MODIS EVI time series 

data in Namibia, but did not test the correlation between field measured vegetation cover and EVI. 

MODIS EVI time-series data used to characterise the phenological character of vegetation in South 

Africa (Colditz et al. 2007; Wessels et al. 2011), and the response of plant productivity following a 

rainfall event in the Okavango (Udelhoven et al. 2015), both produced biologically sensible results.  

The above studies highlight the potential value but also the difficulties in using EO data for 

monitoring vegetation in the Kalahari environment. In particular, background noise from soil needs 

to be addressed to produce meaningful results. As is the case in other arid and semi-arid areas, 

adopting appropriate methodologies, as well as validating the reliability of the EO data through 

ground-truthing exercises is necessary for any work undertaken in the Kalahari. 

 

1.5 Aims and Objectives 

The main purpose of this study was to characterise the spatial and temporal pattern in plant 

productivity in the 100 000 hectare Tswalu Kalahari Reserve (TKR) in the semi-arid Northern Cape 

and relate the observed changes to potential drivers using EO data. The study in TKR provides a 
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unique opportunity to investigate, through time-series data, the effect of a shift in management from 

livestock farming to herbivory by wild ungulates on the vegetation of the region.  

The results of this study have direct implications for the management of TKR, as well as other 

reserves in the region, where a number of livestock farms have been converted into game reserves 

(Cousins et al. 2008). Furthermore, understanding the dynamics and evaluating the influence of 

different potential drivers has value for climate change studies since most climatic models have 

predicted that the Kalahari will experience an increase in aridity and will become significantly 

hotter and drier by 2100 (Thomas et al. 2005; Shongwe et al. 2009; Collins et al. 2013; Mishra et al. 

2015a).  

Specifically, this study aimed to answer the following questions: 

 Question 1. How does vegetation productivity vary both temporally and spatially within the 

Tswalu Kalahari Reserve (TKR)? To answer this question, I produced a Landsat-based 

classification of the vegetation of TKR using remote sensing data and existing conceptual 

frameworks. I then developed a measure of vegetation productivity using phenological 

criteria and tracked the spatial change in this value through time for all areas within TKR. 

 Question 2. What is the relationship between vegetation productivity and rainfall, fire, and 

vegetation type? 

 Question 3. What are the patterns of degradation within TKR over the period 2001-2013 

and how are these degradation trends reflected in the different vegetation types? 

 Question 4. What are the implications of this study for the management of TKR? 
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2 Methods 

2.1 Study Site 

The Tswalu Kalahari Reserve (S -27.2031, E 22.4673) covering 1020 km2, is situated 

approximately 160 km north-east of Upington in the Northern Cape Province, South Africa (Fig. 

2.1). The climate is typically hot and arid, and the highly variable rainfall mainly occurs during 

summer from December to April. Mean annual rainfall for the past 25 years at the rain station 

Dedeben (S -27.2858, E 22.4850) was 361.4 ± 169.2 mm (South African Weather Service 2015). 

The area falls within the Savanna Biome, where the mean plant growth season starts in October and 

ends in June to August the following year (Wessels et al. 2011). The landscape is characterised by 

rocky mountains, sandy plains, and parallel-running sand dunes (Davis et al. 2010). TKR is 

dominated by the Korannaberg Mountains, which extend from north to south, through the middle of 

the reserve. The highest peak in the Korannaberg Mountains is Blou Krans, at 1580 m above sea 

level. Five different vegetation units are mapped by Mucina & Rutherford (2006) in the TKR. 

These include Koranna-Langeberg Mountain Bushveld, Gordonia Duneveld, Gordonia Plains 

Shrubveld, Olifantshoek Plains Thornveld, and Kathu Bushveld (Fig. 2.2). A more detailed 

vegetation study classified the region into 17 vegetation communities (van Rooyen et al. 2005). 

Prior to 1995 TKR was split into more than 40 livestock farms, but was converted into a game 

reserve by removing fences, closing several artificial water points and restocking with indigenous 

animals that used to occur in the region (Davis et al. 2010). TKR has undergone continual 

expansion in the last 20 years. Today, 75 mammal species are present and the reserve has been 

developed into a luxury safari lodge. Most of the introduced mammals are grazing herbivores (e.g. 

Gemsbok Oryx gazella, Springbok Antidorcas marsupialis, Blue Wildebeest Connochaetes taurinus, 

and Hartebeest Alcelaphus buselaphus), with a lesser number of browser species (e.g. Greater Kudu 

Tragelaphus strepsiceros, Giraffe Giraffa camelopardalis, and Black Rhinoceros Diceros bicornis), 

omnivores (e.g. Chacma Baboon Papio ursinus), and predators (e.g. Leopard Panthera pardus, 

African Wild Dog Lycaon pictus). The reserve is divided into three areas by fences, which prevent 

medium- and large-sized mammals from moving across these areas unless guided by management 

personnel. The north eastern section of the reserve is designated as a “predator camp”, where Lions 

Panthera leo are present, while the north west corner of the reserve has been divided into separate 

camps for the breeding of Roan Hippotragus equinus and Sable antelope Hippotragus niger. 
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Fig. 2.1 Location of Tswalu Kalahari Reserve in the Northern Cape Province, South Africa. The 

black dots show the location of the transect surveys, and grey contours represent elevation.  

Tswalu Kalahari 
Reserve 

South Africa 
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Fig. 2.2 Vegetation map of Tswalu Kalahari Reserve adapted from Mucina & Rutherford (2006). 
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2.2 Data 

Satellite Based Vegetation Indices 

The vegetation indices (VI) values derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) were used as proxies for plant productivity. The MODIS sensor 

located on the satellite, Terra, has collected vegetation indices at 1 - 2 day intervals since February 

2000 and 16-day composite products have been developed at 250 m, 500 m, and 1 km resolutions 

(Huete et al. 2002). During the development process, vegetation indices were corrected for 

atmospheric, soil, polarisation, and directional effects (Huete et al. 2002). The MODIS data produce 

two vegetation indices, the Normalised Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI). The VI have been used to monitor plant productivity due to their positive 

correlation with the fraction of absorbed photosynthetically active radiation (fPAR) and Leaf Area 

Index (LAI), which are both used to calculate photosynthetic activity (Myneni et al. 1997; Fensholt 

et al. 2004; Fang et al. 2005). Because of these relationships, MODIS is considered suitable and is 

commonly used for monitoring spatial and temporal patterns of vegetation including those in semi-

arid regions (Colditz et al. 2007; Wistebaar 2008; Sjöström et al. 2011; Davis 2012).  

NDVI is calculated as a ratio between the maximum absorption of radiation in the red (R) spectral 

band and maximum reflection of radiation in the near infrared (NIR) spectral band (Tucker 1979). 

NDVI = 
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
  ----   (1) 

NDVI is the most commonly used index due to its simplicity and its reduction of certain type of 

noise such as illumination and atmospheric variations, cloud shadows, and certain topographic 

effects (Huete et al. 2002). However, NDVI is known to be influenced by variations in the ground 

and soil layer both in high biomass regions, and in vegetation-sparse, arid areas (Huete et al. 2002; 

Pettorelli et al. 2005). Various alternative indices have been proposed to address the shortcomings 

of NDVI, including the Soil Adjusted Vegetation Index (SAVI, Huete 1988) and the Transformed 

Soil Adjusted Index (TSAVI, Baret et al. 1989). The Enhanced Vegetation Index (EVI) is one of 

these measurements, and is designed to reduce the atmospheric noise and canopy background 

variations (Huete et al. 2002), as well as decoupling the influence of the variation in soil brightness 

(Solano et al. 2010).  

The EVI is expressed as: 

EVI = G 𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅 + 𝐶1𝑅 − 𝐶2𝐵𝑙𝑢𝑒 + 𝐿 
 ---- (2) 
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Where L is the canopy background adjustment, and C1, C2 are the coefficients of the aerosol 

resistance term. Coefficients adopted for MODIS EVI algorithms are: L=1, C1=6, C2=7.5 and 

G=2.5 (Huete et al. 2002).  

In this study, I used MODIS EVI products at 250 m resolution (MOD13Q1; Table 2.1) because they 

satisfy both moderate spatial resolution and continuous time-series data with moderately high time 

resolution among the available satellite data. EVI was found to correlate with estimated gross 

primary productivity at seven different sites in Africa (Sjöström et al. 2011) and has also been used 

for monitoring plant productivity in the Kalahari (Colditz et al. 2007; Hüttich et al. 2009; Wessels et 

al. 2011; Udelhoven et al. 2015). Preliminary analysis suggested EVI and NDVI demonstrated a 

similar pattern of plant productivity in TKR, however, EVI performed better in being able to 

express transitional changes in productivity, while NDVI tended to emphasise the contrast. Satellite 

images which encompassed the reserve for the period February 2000 to November 2015 were 

downloaded from the NASA’s Earth Observing System (EOS) clearing house, Reverb 

(http://reverb.echo.nasa.gov/reverb/).  

 

Table 2.1 Summary of the satellite data used for this study  

Sensor and Satellite Index Spatial 
resolution (m) 

Temporal 
resolution Time range 

MODIS, Terra EVI 250 16 days February 2000 – November 2015 

Landsat 8 OLI - 30 - 02 April 2014 
15 November 2015 

MODIS, Terra & 
Aqua 

Burned area 
monthly 500 1 month October 2000 –September 2015 

 

Other Satellite Data  

To obtain the vegetation map of TKR, the cloud free, geometrically-corrected, multispectral 

Landsat 8 Operational Land Imager (OLI) data (captured on 02 April 2014, scene ID 

LC81740792014092LGN00) were used to perform supervised classification. The bands of images 

covered the entire reserve and were taken near the peak of the growth season in an above-average 

rainfall year. The data were obtained from NASA’s EOS clearing house, Reverb. Another set of 

recently acquired multispectral Landsat 8 OLI data (captured on 15 November 2015, scene ID 

LC81740792015319LGN00) were used to understand the relationship between satellite-derived, 
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vegetation indices and plant cover as measured on the ground. The bands of images were cloud-free 

and taken on a date similar to the field data collection period, and were downloaded from NASA’s 

EOS clearing house, Reverb. The downloaded images were converted from digital number (DN) to 

top of atmosphere (TOA) radiance and then corrected for the sun angle as pre-processing before the 

analysis, using Geosud Toa Reflectance QGIS plugin (version 1.0, Ose - Irstea 2015). In addition, 

the MODIS burned area product (MCD45A1), which denotes monthly fire occurrence at 500 m 

resolution, was used to examine the effect of fire on plant productivity in TKR. Data for TKR from 

the beginning of the 2000-01 growth season to the end of the 2014-15 growth season were available 

from NASA’s EOS clearing house, Reverb. 

 

Environmental Data 

Daily rainfall data, collected from 30 rain gauges for the period 2001 to 2014 and which were 

provided by Tswalu Kalahari Reserve, were used in the analysis. In addition, monthly rainfall 

records from five neighbouring rainfall stations (van Zylsrus, Kathu, Severn, Wildebeesduin, and 

Upington) were obtained from the South African Weather Service (South African Weather Service 

2015). To characterise the environmental conditions of the vegetation types, a 30 m resolution 

digital elevation model (Shuttle Radar Topography Mission 1 Arc-Second Global) downloaded 

from the United States geological survey’s data portal site, EarthExplorer 

(http://earthexplorer.usgs.gov/) and detailed GIS layers of soil types in South Africa (CSIR 2012) 

were used in the analysis. 

 

Field Data Collection  

To investigate the relationship between satellite-derived information and field observations, 

vegetation cover was estimated by line transect surveys in the field at pre-determined sample points. 

Since previous studies cautioned the use of VI derived from EO data, this study aimed to assess the 

potential of VI for vegetation studies in the Kalahari. However, it should be noted that this field 

work was done under extreme drought conditions and vegetation cover and EVI were substantially 

less than during average rainfall years. The sample points were randomly selected within 150 m 

distance from the road for Koranna-Langeberg Mountain Bushveld, and 60 m distance from the 

road for other vegetation types. Locations of these points were set at the centre of the grid on the 

Landsat OLI images using QGIS (version 2.10 pisa, QGIS Development Team) (Fig. 2.1).  
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The size of the grid was set at 90 x 90 m, which is equal to nine pixels on the Landsat image, and 

adjacent to the focal pixel in the centre. Firstly, the homogeneity of vegetation structure and the 

absence of artificial structures were confirmed at each sampling site. Next, three parallel 30 m line 

transects along a magnetic north-south bearing were set up in the centre of the focal grid. Plant 

cover for each growth form (tree, shrub, grass, or forb), bare soil, or rock outcrop was recorded in 

the grid at one meter interval, and a total of 93 points were assessed per grid. Then, vegetation 

cover for the focal grid was estimated by calculating the frequency of plant cover per number of 

points. Five dominant species from the grid were recorded to understand the species composition of 

the vegetation types. Additionally, the location of degraded areas, such as areas with very little 

grass cover and bare soil area were recorded. Field data collection was undertaken from 18th - 25th 

of November 2015. 

 

2.3 Analysis 

Classification of Vegetation 

The values derived from multispectral bands of the Landsat OLI data (captured on 02 April 2014, 

scene ID LC81740792014092LGN00) Band B2 – B7 (blue, green, red, near infrared, SWIR1, and 

SWIR2) were used for supervised classification with a maximum likelihood algorithm. A 

comprehensive set of photographs taken in May 2015 of the main vegetation units in TKR was used 

as a training dataset. This was augmented by high resolution satellite images from Google Earth 

(Google Inc 2015), when referring to the national vegetation map (Mucina & Rutherford 2006) for 

the vegetation classes. Based on this approach a total of 69 areas with 68 783 pixels of training 

samples were generated (Table 2.2). The semi-automatic plugin of QGIS (Congedo 2013) was used 

for pre-processing and classification. The routines of post-processing included filtering the isolated 

pixels or noise, and smoothing class boundaries. These routines were performed using ArcMap 

Spatial Analyst extension (version 10.0 ESRI, Redland, USA). The final product which comprised a 

Landsat-based vegetation map was amalgamated into a single image and used for further analysis. 
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Table 2.2 Summary of the training sample for the supervised classification which was used to 

produce a Landsat-based vegetation map for Tswalu Kalahari Reserve. The size of the pixels was 

30 x 30 m, which is equivalent to Landsat OLI data. 

Vegetation type Number of areas Numbers of pixels 
Koranna-Langeberg 
Mountain Bushveld 14 13 701 

Gordonia Duneveld 14 38 559 

Gordonia Plains 
Shrubveld 11 9 653 

Kathu Bushveld 11 2 565 

Olifantshoek Plains 
Thornveld 19 4 305 

Total 69 68 783 

 

Quantifying Phenometrics 

The seasonality parameters of the vegetation indices were extracted from time-series MODIS data 

using the software package TIMESAT (Jönsson & Eklundh 2004). TIMESAT smooths the 

vegetation indices time-series data by fitting a continuous curve and filtering noise and recognises 

nine different measurements, such as the beginning of the plant growth season, the end of the plant 

growth season, and the maximum and minimum value for each pixel (Fig 2.3). These phenometrics 

were grouped into “phenology metrics” and “productivity metrics” according to their characteristics 

(Wessels et al. 2011) (see Appendix A, Table A1). TIMESAT has been used in a number of studies 

to smooth and quantify often noise-corrupted remote sensing data (e.g. Sjöström et al. 2011; 

Wessels et al. 2011; Davis 2012; Fensholt et al. 2013). The adaptive Savitzky-Golay filter with the 

window width of four data points was applied to smooth the data. The season per year was set at 1 

because vegetation in the Kalahari has one growth season a year. The start and end of the growth 

seasons were defined as a 20% increase in the seasonal amplitude, measured from the left and right 

minimum levels to the maximum of the seasonal curve. These values were determined by visually 

inspecting the fitted curve on the TIMESAT GUI following the software manual (Eklundh & 

Jönsson 2012), but also by referring to earlier studies from the region (Wessels et al. 2011; Davis 

2012).  

The means of the 15 year annual metrics were computed for each pixel, as well as the coefficient of 

variance (CV) for the productivity metrics and standard deviation (SD) for the phenology metrics. 



15 
 

These means of the phenometrics were compared across the vegetation types, and a principal 

component analysis (PCA) was performed to determine the underlying pattern using PC-ORD 

Multivariate Analysis of Ecological Data (Version 6. MjM Software). In some years, TIMESAT did 

not detect phenological parameters due to the low and ambiguous peak of the vegetation indices 

caused by erratic rainfall.  Such values were removed from the calculation of the mean, CV, and SD 

but were included in the calculation of the small and integrated values as well as the amplitude of 

the season.  

 

Fig. 2.3 An example of the phenometrics output extracted from satellite data by TIMESAT where 

(a) beginning of season, (b) end of season, (c) length of season, (d) base value, (e) time of middle of 

season, (f) maximum value, (g) amplitude, (h) small integrated value, (h+i) large integrated value 

(after Eklundh & Jönsson 2012). The blue line shows raw values from satellite data, while the red 

line indicates smoothed values.  

 

Validating Satellite Data and Filed Data 

The EVI values derived from Landsat 8 OLI and vegetation cover values estimated from the 

transects were compared by correlation analysis. EVI values were computed from pre-processed B2 

(Blue), B4 (Red), and B5 (NIR) bands of recently-obtained Landsat 8 OLI data following equation 

(2) above. Correlative relationships with EVI values were explored for 1) total vegetation cover (all 

growth forms), 2) woody cover (trees and shrubs), and 3) herbaceous cover (grasses and forbs) 

separately, and vegetation cover was expressed as the ratio of the growth forms recorded from the 

transects in the focal grid during field work. Spearman’s correlation coefficient between EVI and 

herbaceous, woody and total vegetation cover was performed for each vegetation type. 
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Interpolated Rainfall 

To understand the geographical variation in rainfall, a spatially continuous rainfall surface was 

generated by interpolating the rainfall records from 30 stations distributed throughout TKR. Firstly, 

the original data from rain gauges and weather stations were formatted by removing incomplete and 

suspect records. Next, total rainfall for the growth season, which starts at the beginning of October 

and ends at the end of September in the Savanna Biome in South Africa (Wessels et al. 2011), was 

calculated as the annual rainfall for each rainfall station.  

Several algorithms have been proposed to produce an interpolated rainfall surface, including inverse 

distance weighting (IDW), thin-plate smoothing spline, liner regression, and various types of 

kriging (Goovaerts 2000; Di Piazza et al. 2011; Ly et al. 2013). However, geostastical interpolation 

methods such as kriging appear to be preferable when estimating an annual rainfall surface (Ly et al. 

2013). Therefore, this study applied ordinary kriging, the simplest form of geostatistical 

interpolation based on the statistical models involving autocorrelation, to produce rainfall data. A 

spherical model was selected to fit a semi-variogram, which is the most-commonly used model to 

interpolate rainfall (Ly et al. 2013), while other parameters were set at default values. In order to 

match the interpolated annual rainfall surface to the MODIS raster image, the Geostastical Analyst 

tool in ArcMap (version 10.0 ESRI) was used to perform ordinary kriging for the period from 2001-

02 to 2013-14 growth seasons at 250 m spatial resolution. 

 

Relationship between Rainfall and EVI 

In semi-arid areas, rainfall strongly affects plant productivity. Thus an understanding of the 

magnitude of the effect of rainfall is not only important to understand vegetation dynamics, but also 

to distinguish the effect of rainfall from other drivers (Schwinning et al. 2004; Wessels et al. 2007; 

Davis 2012; Fensholt et al. 2013). 

To evaluate the effect of rainfall on plant productivity, Spearman’s correlation coefficient between 

the annual rainfall derived from the interpolated rainfall surface (explanatory variable) and the 

small integrated value of EVI quantified by TIMESAT (response variable) was computed for each  

vegetation type. Earlier studies often used ∑NDVI, calculated from annual sum of NDVI or sum of 

NDVI during the growth seasons as a proxy for the NPP (Pettorelli et al. 2005; Wessels et al. 2007, 

2012). However I used the small integrated value of EVI estimated by TIMESAT. The small 

integrated value also provides a good estimate of the production of the seasonally-dominant 
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vegetation type (Jönsson & Eklundh 2004), and recent studies have found that the small integrated 

value of VI estimated by TIMESAT has better agreement with annual primary production in the 

Sahel (Fensholt et al. 2013; Mbow et al. 2013). Additionally, preliminary analysis showed that the 

annual small integrated value of EVI exhibited a higher correlation with cumulative rainfall. 

Different responses to rainfall across vegetation types were tested by ANOVA and post-hoc 

Tukey’s HSD test. Vegetation types were assigned by upscaling the 30 m resolution Landsat-based 

vegetation map to 250 m grid, which matched precisely to the MODIS data, by allocating the 

dominant vegetation type in each 250 m grid. All statistical analysis was done using R (version 

3.0.1, R Core Team). 

 

Degradation Trends 

Rain-use Efficiency (RUE) 

Rain-use efficiency (RUE) is one of the analytical techniques used to distinguish anthropogenic 

degradation from the inter-annual variability of rainfall in arid and semi-arid regions. RUE is 

expressed as the ratio of net primary productivity against rainfall for a specified period, and a 

decline in RUE over time is considered to be an indication of degradation (Wessels et al. 2007; 

Davis 2012; Fensholt et al. 2013). The small integral of EVI estimated by TIMESAT was used to 

represent annual net primary productivity, and this value was then divided by the corresponding 

interpolated rainfall surface value to calculate annual RUE. The annual RUE was computed and 

then regressed over the 2001-2013 growth seasons to investigate long-term trends in degradation.  

 

Residual trends (RESTREND) 

Residual trends (RESTREND) were analysed using each growth season (Oct-Sep) as a time step. 

RESTREND assesses the trend of degradation based on a concept similar to RUE. However, by 

removing the effect of rainfall from the long-term trend in productivity, this approach can highlight 

human-induced land degradation. While the detectability of RESTREND has been questioned in 

arid areas or when the intensity of degradation is weak, this method has been used and has 

successfully captured degradation patterns at a national scale (Wessels et al. 2007; Wessels et al. 

2012).  



18 
 

The regression from 13 growth seasons of times-series EVI and rainfall data was computed 

following Wessels et al. (2007). First, the regression of the small integrated value of EVI 

(responsive variable) and cumulative rainfall (explanatory variable) was calculated for the growth 

seasons for each pixel. Then, trends in the residual, expressed as the difference between observed 

EVI and predicted EVI by rainfall, were regressed through the growth seasons (Wessels et al. 2007; 

Wessels et al. 2012). The results were mapped to determine the distribution pattern of degraded 

areas. Data from the 2006-07 growth season (October 2006 to September 2007), when TKR 

experienced a severe drought, was excluded from this analysis. This was because when rainfall is 

too low to detect an active response in plant productivity, small values may cause a bias and 

disproportionally affect the underlying regression model.  
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3 Results  

3.1 Distribution of the Vegetation Types in Tswalu Kalahari Reserve 

Five vegetation types were classified in the Tswalu Kalahari Reserve (TKR) (Table 3.1). The 

overall spatial patterns of the vegetation types were aligned to Mucina & Rutherford (2006), but the 

Landsat-based map illustrated the vegetation types in greater spatial detail (Fig. 3.1; see also 

Appendix B). The Landsat-based vegetation map was derived solely from the Landsat OLI 

reflectance values measured by the on-board satellite sensors, and did not consider species 

composition or climate gradients. To identify and compare these Landsat-based vegetation types to 

those that have already been described by Mucina & Rutherford (2006) will require detailed 

vegetation surveys including an analysis of species composition. However, that was not within the 

scope of this study. Field observations recognised a general correspondence between topography, 

plant community structure and the Landsat-based vegetation types. For example, the relatively 

mountainous Koranna-Langeberg Mountain Bushveld vegetation was comprised predominantly of a 

mixture of trees and shrubs, Gordonia Duneveld was dominated by grasses, Gordonia Plains 

Shrubveld, by dwarf shrubs and Olifantshoek Plains Thornveld by thornveld and thicket vegetation 

(Fig. 3.2). Field assessments based on these relationships and the distribution of different plant 

growth forms demonstrated an overall good agreement with the Landsat-based vegetation map. 

However, disturbed areas such as old artificial water points were often misclassified as Gordonia 

Plains Shrubland. Likewise, some of the pans in the west of TKR were incorrectly designated as 

being part of the Koranna-Langeberg Mountain Bushveld. In addition, the boundaries of the 

vegetation types were not always distinct and were often mixed at the margins, particularly among 

Gordonia Duneveld, Kathu Bushveld, and Olifantshoek Plains Thornveld. 

According to the Landsat-based vegetation map, the Koranna-Langeberg Mountain Bushveld was 

mostly distributed in the central part of TKR, along the Korannaberg Mountain Range at the altitude 

of 1160 -1460 m above sea level. Results from field observations showed that in this vegetation 

type rock outcrops were frequently exposed at the surface, and small trees and shrubs including 

Croton gratissimus, Rhus burchellii, and Ziziphus mucronata, and grass species such as Aristida 

diffusa and Digitaria sp. grew in the crevices of the rocks. Gordonia Duneveld mainly occurred in 

the central part of TKR, where the distinctive NNE-SSW aligned dune strips of 0.5 - 1 km intervals 

have formed as a result of prevailing winds. This vegetation type was dominated by grasses, 

although species composition varied depending on the topography of the undulating dunes. The 

crest of the dunes had lower vegetative cover with perennial grasses such as Eragrostis pallens and 
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Stipagrostis uniplumis dominating the area together with the occasional stand of Terminalia sericea 

trees. On the slope of the dunes, perennial grasses such as E. pallens, S. uniplumis, and Aristida 

congesta ssp. congesta usually dominated, and sparse tall shrubs such as Vachellia haematoxylon 

and Vachellia erioloba, as well as herbaceous species Elephantorrhiza elephantine and Hermannia 

tomentosa were observed. Strips of the dunes typically had higher shrub and tree cover with 

Senegalia mellifera, Grewia flava, and Rhus tenuinervis dominating in places. Gordonia Plains 

Shrubveld was found in the western plains of TKR, and this vegetation was comprised of a mixture 

of shrubs and grasses. Typically, this vegetation type had 20 - 30% cover of shrubs dominated by G. 

flava, S. mellifera, and Rhigozum trichotomum. Other common species from this vegetation type 

included the shrub Lycium cinereum and grass species, Centropodia glauca. Towards the west of 

the reserve, the white compact soils distributed in the shallow depressions were dominated by dwarf 

shrubs including Monechma incarna and R. trichotomum as well as a sparse cover of tall shrubs 

such as S. mellifera and G. flava. Some of the disturbed areas which were present, presumably as a 

result of past livestock farming practices in the central parts of the TKR and west of the Koranna 

Mountains, were misclassified as Gordonia Plains Shrubveld, although most of these areas are 

assumed to belong to Olifantshoek Plains Thornveld. Kathu Bushveld occurred in the central and 

eastern side of TKR, which was characterised by sparse tall trees including Boscia albitrunca and V. 

erioloba and an extensive layer of perennial grass dominated by S. uniplumis and A. congesta subsp. 

congesta. The Olifantshoek Plains Thornveld was distributed in the eastern part of the TKR and 

typically formed dense thickets consisting of shrubs such as S. mellifera, R. trichotomum, G. flava, 

and L. cinereum.  
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Table 3.1 Key characteristics of the Landsat-based vegetation types in the Tswalu Kalahari Reserve 

(see Fig. 3.1). A list of the dominant species is provided for each vegetation type as well as the 

mean +standard deviation values for altitude, annual rainfall, soil depth, rock cover and topsoil clay. 

An explanation of the symbols used to define the major soil types is as follows; Ic: Rock outcrops 

comprise >80% of land type, Ac: Freely drained, red and yellow, dystrophic/mesotrophic, apedal 

soils comprise >40% of the land type (red and yellow soils each >10%), Ae: Freely drained, red, 

eutrophic, apedal soils comprise >40% of the land type (yellow soils comprise <10%), Af: Freely 

drained, red, eutrophic, apedal soils comprise >40% of the land type (yellow soils comprise <10%); 

with dunes, Ah: Freely drained, red and yellow, eutrophic, apedal soils comprise >40% of the land 

type (red and yellow soils each comprise >10%). 

Vegetation types Altitude 
(m) 

Annual 
rainfall 
(mm) 

Soil 

Dominant species Major 
soil 
type 

Depth 
(mm) 

Rock 
cover 
(%) 

Topsoil 
clay  
(%) 

Koranna-Langeberg  
Mountain Bushveld 

1303.6 
± 95.6 

347.6 ± 
14.4 Ic 555.2 ± 

432.0 
63.8 ± 
37.1 

7.8 ± 
1.2 

Croton gratissimus, 

Aristida diffusa , 

Digitaria sp., Grewia 

flava, Rhus burchellii 

Gordonia Duneveld 1100.1 
± 39.3 

312.6 ± 
16.1 Af 1176.9 

± 81.8 
1.1 ± 
2.4 

3.2 ± 
1.7 

Stipagrostis uniplumis, 

Eragrostis pallens , 

Grewia flava, Vachellia 

erioloba, Vachellia 

haematoxylon 

Gordonia Plains 
Shrubveld 

1075.6 
± 33.5 

304.3 ± 
10.5 Af, Ah 1280.4 

± 67.0 
1.1 ± 
3.6 

3.8 ± 
1.0 

Centropodia glauca, 

Senegalia mellifera, 

Grewia flava, Rhigozum 

trichotomum, 

Monechma incanum 

Kathu Bushveld 1157.7 
± 52.4 

335.7 ± 
18.4 Ae, Af 1215.6 

± 125.5 
2.0 ± 
8.5 

5.3 ± 
2.5 

Stipagrostis uniplumis, 

Aristida congesta subsp. 
congesta, Grewia flava, 

Senegalia mellifera, 

Boscia albitrunca 

Olifantshoek Plains 
Thornveld 

1182.4 
± 54.2 

342.3 ± 
13.7 Ac, Ae 1248.4 

± 174.1 
3.7 ± 
14.3 

6.8 ± 
1.6 

Senegalia mellifera, 

Rhigozum trichotomum, 

Stipagrostis uniplumis, 

Grewia flava, Lycium 

cinereum 
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Fig. 3.1 Landsat-based vegetation map for the Tswalu Kalahari Reserve (TKR) classified by using 

multispectral Landsat 8 Operational Land Imager (OLI). The name of the vegetation types refer to 

those used by Mucina & Rutherford (2006). 
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Fig. 3.2 Photographs of the vegetation types in 

Tswalu Kalahari Reserve, (a) Koranna-

Langeberg Mountain Bushveld, (b) Gordonia 

Duneveld, (c), Gordonia Plains Shrubveld, (d) 

Kathu Bushveld, and (e) Olifantshoek Plains 

Thornveld. 

  

a b 

c d 
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3.2 Spatial Pattern of EVI in Tswalu Kalahari Reserve 

The overall geographical trend of the mean of the small integral value of EVI, a proxy for annual 

plant productivity, was higher in the east and lower in the west (Fig. 3.3). There was a significant 

effect of different vegetation types on all the productivity metrics determined by TIMESAT at the p 

< 0.05 level (Fig 3.4; Appendix A). Post-hoc comparisons indicated that the mean of the small 

integral value of EVI was significantly different between vegetation types (p < 0.05), with Koranna-

Langeberg Mountains Bushveld and Olifantshoek Plain Thornveld exhibiting higher values and 

Gordonia Plains Shrubveld lower values than the other vegetation types. Generally, differences in 

EVI values between the vegetation types followed a west-east geographical trend. 

Differences in the structure of the vegetation were recognised from the spatial pattern of EVI. For 

example, the parallel patterns of the dunes were clearly depicted, showing lower productivity on the 

crests and higher productivity values in the inter-dune areas (Fig. 3.3), which corresponded to the 

field observations of vegetation cover. Similarly, provincial roads running across the eastern part of 

TKR were visible as a line of low EVI value. Discontinuous differences of the small integrated 

value of EVI around the boundary of the vegetation types were observed. With significant 

differences in productivity metrics measured between the vegetation types, it is assumed that 

physical attributes of the vegetation such as dominant growth forms, species composition, and soil 

types, influenced the EVI values.  

Ordination of the vegetation types by the phenometrics using principal components analysis (PCA) 

showed a relative similarity of the phenometrics within Olifantshoek Plains Thornveld, Kathu 

Bushveld and Gordonia Duneveld. In contrast, Koranna-Langeberg Mountains Bushveld and 

Gordonia Plains Shrubveld were relatively different from other vegetation types (Fig. 3.5). This 

similarity was generally coincident with the spatial distribution of these vegetation types. Principal 

component loadings suggested that principal component 1 (PC1) mainly represented the gradient of 

productivity metrics, and principal component 2 (PC2) mainly indicated the seasonal variation of 

the productivity metrics represented by base and maximum values (Fig. 3.5).  

The fence-line along and within the boundary of TKR was not visible from the distribution of EVI. 

The degraded sites observed during the field survey, such as those surrounding the water points and 

the old farm structures were also not highlighted by the EVI mapping (see Appendix C for the 

degraded sites). However, several patches of low EVI values located south east of TKR 

corresponded to the inferred location of water points as observed from Google Earth satellite 

images. 
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Fig. 3.3 Mean of small integrated value of EVI determined by TIMESAT in Tswalu Kalahari 

Reserve for the 2000-01 to 2014-15 growth seasons. The small integrated value of EVI is known to 

correlate with plant productivity and the red colour shows lower productivity, while the green 

colour shows higher productivity. 
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Fig 3.4 Boxplots for the 15 year average for each pixel of phenological and productivity metrics 

(2000-01 – 2014-15 growth seasons) in the different vegetation types in Tswalu Kalahari Reserve 

(KM = Koranna-Langeberg Mountain Bushveld, GD = Gordonia Duneveld, GS = Gordonia Plains 

Shrubveld, KB=Kathu Bushveld, OT = Olifantshoek Plains Thornveld). Post-hoc comparisons 

using the Tukey HSD detected significant differences (p < 0.05) for all pairs of vegetation types 

unless noted as ns (not significant).  

ns 
ns 

ns ns 
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Fig 3.5 The results of a Principle Components Analysis (PCA) for the phenological and 

productivity metrics for the vegetation types in the Tswalu Kalahari Reserve. The graph on the left 

shows the principle component loadings while the graph on the right shows the distribution of 

principle components. KM = Koranna-Langeberg Mountain Bushveld, GD = Gordonia Duneveld, 

GS = Gordonia Plains Shrubveld, KB = Kathu Bushveld, OT = Olifantshoek Plains Thornveld. 

Begin = beginning of season, End = end of season, Length = length of season, Mid = time of middle 

season, Amp = amplitude, Base, Max = maximum value, S_int = small integrated value, L_int = 

large integrated value. 
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3.3 Seasonal Trend of EVI 

The time-series analysis of EVI values demonstrated a seasonal cycle in plant productivity with 

high values in the summer months and low values in the winter months (Fig. 3.6). On average, the 

beginning of the growth season started in the period from December to January, and ended in 

August to September (Fig. 3.4; Appendix A). ANOVA detected a significant effect of different 

vegetation types on all the phenological metrics as determined by TIMESAT at the p < 0.05 level 

(Fig 3.4). Post-hoc comparisons suggested that phenological metrics were significantly different 

among most of the vegetation types with a few exceptions. Korannaberg-Langeberg Mountains 

Bushveld exhibited a more extended growth season than other vegetation types (p < 0.01). 

Spatially, the mean value for EVI was more heterogeneous in summer than in winter (Fig. 3.7). In 

summer, dozens of patches of high EVI values occurred mainly outside TKR, which corresponded 

to the inferred location of water points as observed in Google Earth satellite images. 

 

 

Fig. 3.6 Time series of EVI for the period 2000-2014 for the different vegetation types in Tswalu 

Kalahari Reserve. Each colour represents a different vegetation type.  
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Fig. 3.7 The mean of EVI in the different seasons from 2001 to 2015 in Tswalu Kalahari Reserve. 

Left map shows the mean EVI of the summer period (1st Jan – 23rd Mar, six images ) and right map 

shows mean of the winter period (27th Jun – 15th Sep, six images) 

 

3.4 Long Term Trend of EVI 

The time series of EVI for the past 16 years in TKR illustrated high inter-annual variability in plant 

productivity (Fig. 3.6). EVI values changed dynamically and low values were evident during the 

2000-01, 2002-03, 2003-04, 2006-07, 2012-13 and 2014-15 growth seasons, which corresponded to 

low annual rainfall (Fig. 3.8; Appendix D). In the 2006-07 growth season, when the annual rainfall 

was lowest for the study period, TIMEAT failed to quantify the productive metrics for some pixels 

due to a low and indistinct peak in EVI. 

Summer Winter 
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2000-01 2001-02 2002-03 2003-04 

2004-05 2005-06 2006-07 2007-08 

2008-09 2009-10 2010-11 2011-12 

2012-13 2013-14 2014-15 

Fig. 3.8 A composite image of the annual small 

integrated value of EVI in Tswalu Kalahari Reserve for 

the 2000-01 to 2014-15 growth season, which starts at the 

beginning of October and ends at the end of September. 

Red colour indicates a lower EVI value corresponding 

with lower plant productivity.  
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3.5 The Relationship between EVI and Vegetation Cover 

There was no significant correlation between satellite-derived EVI values and field measured 

vegetation cover with a few exceptions (Fig. 3.9). The only statistically significant correlation was 

found for EVI and total vegetation (r = 0. 66, p = 0.04) and herbaceous cover (r = 0.66, p = 0.04) in 

Kathu Bushveld, and between EVI and woody cover in Gordonia Plains Shrubveld (r = 0.52, p = 

0.03). The relationship between EVI and vegetation cover was not consistent across the vegetation 

types, and data from Koranna-Langeberg Mountain Bushveld demonstrated a different trend from 

the other four vegetation types.  

 

        

        
Fig. 3.9 The relationship between enhanced vegetation index (EVI) developed from Landsat 8 OLI 

data and (a) total vegetation cover, (b) woody cover (trees and shrubs), and (c) herbaceous cover 

(grass and forbs) estimated by transect survey in Tswalu Kalahari Reserve (KM = Koranna -

Langeberg Mountain Bushveld, GD = Gordonia Duneveld, GS = Gordonia Plains Shrubveld, 

KB=Kathu Bushveld, OT = Olifantshoek Plains Thornveld).  

a b 

c 
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3.6 The Relationship between Plant Productivity and its Potential Drivers 

Rainfall 

Rainfall has been highly variable over time and space in TKR in the past 15 years (see Appendix D). 

However, there is a general spatial gradient evident in the data with mean annual rainfall being 

higher in the east and lower in the west (Fig 3.10). Although the Korannaberg Mountains probably 

receive higher rainfall than other areas in TKR due to the orographic effects of altitude, this was not 

confirmed due to the lack of rain gauges on the slopes and peaks of the mountains.  

Regression analysis between the small integrated value of EVI and annual rainfall indicated a 

positive correlation for most of TKR (p < 0.05), except in a part of the Roan Sable breeding camp 

as well as the Kathu Bushveld and Gordonia Duneveld to the east of the Korannaberg Mountains 

(Fig. 3.11). Different slopes of the regression line among vegetation types also implied that the 

response of plant productivity to rainfall is specific to each vegetation type (Fig. 3.12).  

 
Fig. 3.10 Interpolated mean annual rainfall surfaces by ordinary kriging for the period from 2001-

02 to 2013-14 growth seasons in Tswalu Kalahari Reserve.  
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Fig. 3.11 Map of correlation of determination (R2) of the regression analysis for the annual  rainfall 

for the growth seasons (explanatory variable) and small integrated value of EVI (responsive 

variable) between 2001-02 and 2013-14 growth seasons, excluding the drought season of 2006-07. 

  

2 
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Fig. 3.12 The regression analysis between the average of interpolated annual rainfall surface and the 

average of small integrated value of EVI for each vegetation type from the 2001-02 to 2013-14 

growth seasons in Tswalu Kalahari Reserve. The isolated points in the bottom left corner of the 

graphs are derived from the poor 2006-07 growth season data. The red line shows the regression 

relationship between annual rainfall (mm) and Small integrated EVI excluding the data from the 

2006-07 growth season. 

Gordonia Plains Shrubveld Kathu Bushveld 

Olifantshoek Plains Thornveld 

Gordonia Duneveld 
Koranna-Langeberg 
Mountain Bushveld 
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Fire 

Three fire events were evident in the satellite data over the past 16 years in TKR. All of the 

recorded fires were located in the Korannaberg Mountains in the south eastern corner of the reserve. 

Consequently, most of the reserve has not burned during the study period (Fig. 3.13). The impact of 

fire on plant productivity was captured by the small integrated value of EVI, although the response 

was case-specific. For example, the area south of the staff village which burned in 2012 had a low 

small integrated value of EVI in 2012, but the area which was burned in 2011 had a more muted 

response (Fig 3.8). Conversely, the area which burned outside TKR in 2010 showed an increase in 

the small integrated value in the same season. This result may have been caused by post-fire 

recovery processes. From these observations, it is assumed that the intensity and date of the fire 

influences several key characteristics of plant productivity in the growth season immediately after 

the fire. 

  
Fig. 3.13 The frequency of fire from 2000-01 to 2014-15 growth seasons delivered from MODIS 

burned area products (MCD45A1) in Tswalu Kalahari Reserve, indicating that the burned areas in 

the past 15 years were confined to the mountains in the south eastern corner of the reserve. The 

numbers on the map indicate the year and month in which the fires occurred. 
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3.7 Degradation Mapping 

Rain Use Efficiency (RUE) 

The spatial pattern of mean rain-use efficiency (RUE) was generally highest in Koranna-Langeberg 

Mountain Bushveld and lowest in Gordonia Duneveld. However, the mean of the 13 year data was 

strongly influenced by the 2006-07 growth season data, when rainfall was extremely low and RUE 

was extremely variable (see Appendix E). When the effect of the 2006-07 growth season was 

removed, mean RUE was still highest in Koranna-Langeberg Mountain Bushveld and lower in other 

vegetation types (Fig. 3.14a). This spatial pattern was consistent with the mean of the small 

integrated value of EVI (Fig. 3.3). The lowest mean RUE was observed at the pans and water points 

in the western part of TKR, but not all the degraded areas observed during the field survey were 

identified as locations with the lowest RUE values.  

The trend in RUE, expressed as the coefficient of regression over time, was not statistically 

significant for most of the reserve (p < 0.05) (Fig. 3.14b). A significant decline in the trend of RUE 

was observed in several locations in Gordonia Duneveld and Gordonia Plains Shrubveld, while an 

increasing trend was observed in some pixels in the eastern part of TKR. The general spatial pattern 

of the trend in RUE was for an increase in RUE in the east, and a decrease in the west. Although the 

trend was not significant, the burned area in 2012 in the Korannaberg Mountains was clearly 

depicted as having a declining trend.   
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Fig. 3.14 Results of Rain-use efficiency (RUE) analysis showing (a) mean of RUE and (b) slope of 

the regression of RUE in Tswalu Kalahari Reserve (TKR) for the 2001-02 to 2013-14 growth 

season, excluding the 2006-07 growth season when TKR experienced a severe drought. The slope 

of the regression was computed by regressing RUE values for each growth season (responsive 

variable) against the growth seasons counted from 2001-02 (explanatory variable). Shadowed pixels 

indicate the areas in which no significant trend was detected. 

  

 

  

a b 
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Residual Trend Analysis 

The trend in plant productivity computed by the residual trend analysis (RESTREND) detected a 

significant positive trend in plant productivity in the east and south west of TKR, while a negative 

trend was detected in some locations in the west (Fig.3.15). The standardised RESTREND values 

from these areas demonstrated a relatively consistent and directional change over time (Fig. 3.16). 

This suggested that the observed change was initiated before the 2000-01 growth season and that 

the driver of change has remained the same. Most of the area which showed an increasing trend 

overlapped with shrub-dominated vegetation, especially the Olifantshoek Plains Thornveld in the 

east and Gordonia Plains Shrubveld in the southwest. 

 
Fig. 3.15 Map of the slope of the residual-year regression analysis of RESTREND. The areas where 

a significant trend was not found as displayed in shadow. RESTREND analysis showed a 

significant positive long-term trend in vegetation productivity in the eastern and south western part 

of Tswalu Kalahari Reserve. 
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Fig. 3.16 Examples of significant trends in standardised RESTREND values over time from several 

areas with significant decreasing trends (graph 2 and 3) or increasing trends (graph 1 and 4-7) in 

Tswalu Kalahari Reserve. Values are shown as mean ± standard deviation in each area. The small 

map below indicates the areas of data in each graph. 
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4 Discussion 

4.1 Patterns of Plant Productivity in Tswalu Kalahari Reserve 

Spatial Patterns 

Spatially, the mean small integrated value of EVI increased along a gradient from west to east 

which coincided with an increasing trend in rainfall. The same geographical trend was recognised in 

the relative similarity of the productive metrics among the vegetation types. Supported by the 

general correlative relationship between rainfall and EVI values, the results therefore highlighted 

the major influence of rainfall in determining vegetation productivity and confirmed the importance 

of rainfall identified by earlier vegetation studies carried out elsewhere in the Kalahari (van Rooyen 

et al. 1990; van Rooyen & van Rooyen 1998; Masunga et al. 2013; Mishra et al. 2015a).  

The spatial distribution of EVI values also suggested that vegetation type had an influence on 

vegetation productivity. Each vegetation type was comprised of species with a unique combination 

of plant structural and functional traits. The Landsat-based vegetation map showed a general trend 

for increasing and thickening woody cover from the west towards the east. For example, Gordonia 

Plains in the west was a mixture of grasses and dwarf shrubs, and Gordonia Duneveld in the central 

and western parts of TKR was predominantly a grassland with shrubs occurring in the depression of 

the dunes. Kathu Bushveld was open and had more woody cover with sparse tall trees and shrubs, 

while Olifantshoek Plains Thornveld in the east was mostly thicket vegetation with high woody 

cover. Mishra et al. (2015b) found woodland areas demonstrate higher VI and the values decreased 

as the woody cover density decreased (e.g. to an open shrubland or grassland) in the central 

Kalahari. Therefore, the spatial pattern of vegetation productivity was likely to be related to 

differences in species traits. Additionally, spatial variation in vegetation types was partly a 

reflection of the characteristics of different types of soil, which would indirectly also have 

influenced EVI values. Plants do not respond directly to precipitation, but to soil moisture through 

variations in infiltration rates, soil depth, and water retention (Jolly & Running 2004; Reynolds et al. 

2004). Bare soil associated with different vegetation types could also affect EVI values directly by 

influencing the level of background noise (Palmer & van Rooyen 1998; Kong et al. 2015). 

Consequently, it was assumed that changes across vegetation types were likely to be a combination 

of both the difference in plant functional types and differences in soil types. 

Large areas of bare ground around artificial water points illustrated the effects of higher densities of 

ungulates on vegetation, but EVI mapping did a poor job of identifying these degraded areas. It has 

previously been reported that degraded areas cannot always be measured by the level of annual 
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vegetation productivity in the Kalahari (van Rooyen 2000). This is because EVI values in degraded 

areas are as influenced by rainfall as the surroundings. Presumably, annual grasses and herbaceous 

species such as Schmidtia kalahariensis which can emerge quickly in degraded areas after rain, 

contribute to an increase in EVI values, thereby reducing the difference between degraded and non-

degraded areas (van Rooyen et al. 1984; van Rooyen 2000).  

 

Temporal Patterns 

Vegetation productivity as represented by time-series EVI values demonstrated strong temporal 

variation, probably reflecting high seasonal change in vegetation cover (i.e. annual grasses, 

defoliation) in the Kalahari (van Rooyen et al. 1984). Typically, EVI values increased in the late 

spring to summer, decreased in the late autumn, and then remained low during the winter. This 

cycle matched the findings of previous studies used EO data (Jolly & Running 2004; Hüttich et al. 

2009; Wessels et al. 2011; Mishra et al. 2015a), as well as field observations in the Kalahari 

(Sekhwela & Yates 2007), and confirmed the reliability of EVI as a proxy for seasonal vegetation 

productivity cycles. Annual vegetation productivity characterised by the small integrated value of 

EVI had a dynamic response to annual rainfall and confirmed the major effect of rainfall in 

determining vegetation productivity in the Kalahari (van Rooyen & van Rooyen 1998; Masunga et 

al. 2013; Mishra et al. 2015a). 

Seasonal climatic fluctuations and plant structural and functional traits are likely to influence the 

phenological profile of the vegetation indices in the Kalahari (Mishra et al. 2015a). Among the 

vegetation types, the start of the growth season varied between years to a greater degree in 

Gordonia Duneveld (which is comprised predominantly of grass species) and Gordonia Plain 

Shrublands, while other vegetation types were less variable. In the dry savanna, grasses are known 

to be highly responsive to rainfall events, while low shrubs generally have limited access to water in 

the vadose zone, and many of the taller shrubs such as Senagalia spp. and Vachellia spp. have deep 

roots that enable them to access more stable underground water sources (Jolly & Running 2004; 

Sekhwela & Yates 2007). As a result, the phenological responses in woody species are relatively 

muted in comparison to grass species which response rapidly to water availability (van Rooyen et al. 

1984; Scanlon et al. 2002; Archibald & Scholes 2007). In general, the expected response to rainfall 

from species with these different functional traits matched the spatial and temporal variability in 

‘greening up’ at the start of the growth season. 
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In contrast, the end of the growth season was more variable spatially, rather than inter-annually 

(Appendix A, Fig. A1). Spatial differences were likely to be due to differences in the characteristics 

of different plant species in each of the vegetation types, as well as underlying soils. For example, 

Koranna-Langeberg Mountain Bushveld has an extended growth season compared to other 

vegetation types (Fig. 3.4), presumably because one of the dominant species, Croton gratissimus, 

retains its mature leaves until the start of the dry season (Childes 1988). Furthermore, evergreen 

trees such as C. gratissimus, generally have higher photosynthesis rates during the winter months in 

comparison to deciduous trees (van Rooyen et al. 1986). Although not explicitly explored in this 

study, moisture retention within the rockier slopes on which Koranna-Langeberg Mountain 

Bushveld occurs might be an additional factor which allows this vegetation type to extend its 

photosynthetic activity deeper into the dry winter months.  

Low inter-annual variability as seen in low standard deviation values for end of the season 

(Appendix A, Fig. A1), suggests that factors which are more temporally predictable than rainfall, 

such as day light length or low temperature thresholds could contribute to determining the end of 

the growth season. However, further analysis is required using higher temporal resolution 

environmental data in combination with frequent field observations in order to better understand 

what switches off growth within the TKR.  

 

4.2 Drivers of Plant Productivity 

Rainfall 

Results confirmed rainfall as a principal driver of vegetation dynamics in this arid region of the 

Kalahari (van Rooyen et al. 1984; Jolly & Running 2004; Reynolds et al. 2004; Wessels et al. 2007; 

Mishra et al. 2015a). This is represented as a strong linear relationship between rainfall and EVI 

which suggests that animal carrying capacity may also fluctuate depending on the amount of rainfall. 

This poses a potentially growing risk to wildlife and wildlife management under future climate 

change, as the Kalahari region is expected to experience some of the greatest temperature increases 

in southern Africa, with concomitant reductions in moisture availability due to reduced rainfall and 

evaporative loss (Shongwe et al. 2009; Collins et al. 2013; Dai 2013). However, this regression 

relationship may oversimplify more complex interactions (Wessels et al. 2007). Plants usually 

respond, not to rainfall but to soil moisture, which is controlled by the water retention capacity of 

the soil, by run-off, and topography. The size, seasonality, and interval of rainfall events may also 

affect plant productivity in the drylands (Reynolds et al. 2004; Wessels et al. 2007).  
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For areas where there was a weak or poor correlation between the rainfall and EVI the influence of 

factors other than rainfall appears to be important (Fig. 3.11). For example, a significant correlation 

was not found in the Roan Sable breeding camp in the north-western corner of TKR, probably due 

to the higher density of animals and possibly uneven intensity of grazing pressure. Additionally, 

parts of the area which experienced a fire in 2012 did not demonstrate a significant correlation 

between rainfall and EVI, which might reflect the relatively early stages of post-fire vegetation 

recovery. Parts of north eastern TKR also exhibited a poor correlation between rainfall and EVI 

although explanations for this were not immediately evident. Additional field work is required to 

assess the potential causes that could have influenced the annual rainfall – EVI relationship. 

 

Fire 

The effect of fire on vegetation productivity was considered to be of short duration or localised in 

nature in TKR. According to the EO data, the occurrences of fires were isolated and confined to the 

south-east of the reserve and as such, most of TKR has not experienced fire in the past 16 years. 

The spatial pattern of fire occurrence followed a west to east gradient of increasing rainfall, which 

implies there is probably a link between fire frequency and rainfall.  This is because higher rainfall 

can stimulate greater plant growth and in so doing accumulate greater fuel loads (Thomas & Paul 

1991). The responses of plant productivity to fires varied depending on the area and vegetation type 

but in general, the effect of fire appeared to last for 2 - 3years. However, the low frequency of fires 

in the past 16 years suggests that the research period may not have been long enough to fully 

evaluate the impact of fire on vegetation in the reserve.  

 

Herbivory 

Between 2005-2014 the number of herbivores within the major part of TKR increased constantly 

while in the predator camp in the north and eastern part of TKR herbivore density remained stable 

(D. Smith, personal communication). Results suggested both a degradation effect from heavy 

grazing, as well as little to no impact in areas of higher rainfall and/or predator presence. For 

example, herbivore-driven degradation was evident in the Roan Sable breeding camp due to high 

stocking rates, artificial water points and the provision of supplemental feed. A decline in plant 

productivity was suspected in a few other locations in TKR, such as in parts of the Gordonia Plains 

Shrubveld and Gordonia Duneveld in the western part of TKR. This was possibly due to grazing 
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preference in these areas and proximity to artificial water points. In the above examples the 

degradation trend might be underestimated due to a limitation in the ability of the RESTREND 

analysis to detect degraded areas (Wessels et al. 2012). In other areas the increased productivity of 

woody shrubs (as evidenced from the RESTREND analysis), suggested that browsing species such 

as Kudu and Black Rhinoceros were not able to suppress the expansion of woody species, resulting 

in bush encroachment.  

The observable effect of land use change from livestock farms to a game reserve was not found in 

this study. Field observations confirmed the presence of piosphere effects around the artificial water 

points and the old farming structures. But the results did not indicate any trend in vegetation 

productivity over the study period, and the past satellite images suggested that the degradation 

around the artificial water points started at least as early as the 1980s, 20 years before TKR was 

established (see Appendix F). In some early images, the clear differences in vegetation cover 

evident across fence-lines disappeared in later images as fences were removed and grazing pressure 

distributed more evenly across the landscape. 

 

4.3 Patterns of Degradation and Long-term Trends  

Results of the RESTREND and RUE analysis suggested ongoing bush encroachment and an 

increase in woody shrub cover especially in the eastern and southwestern parts of TKR, which is 

likely to have started before this study. The shift in climatic seasonality,  in particular the timing of 

rainfall, could affect the results of the RESTREND analysis by altering growth season (Davis 2012), 

but the length of the growth season quantified by TIMEAT did not demonstrate a significant trend 

during the study period for all pixels (p < 0.05). Fire, on the other hand, might have had a local 

effect on the slope of the RESTREND analysis in the south-eastern part of TKR. The area showed 

relatively high RESTREND values during the 2012-13 growth seasons following a fire at the end of 

the 2011-12 growth season, which suggested that there was some influence from post fire recovery.  

However, this does not account for the broader pattern of bush encroachment evident in the eastern 

parts of TKR. Earlier studies have noted that bush encroachment can have multiple possible causes 

including overgrazing and selective feeding of livestock, fire suppression, increases in rainfall and 

episodically high rainfall, local extinction of mega herbivores, and increasing atmospheric CO2 

concentrations (Roques et al. 2001; Ward 2005; O’Connor et al. 2014). Given the short temporal 

duration of this study, it is difficult to argue for one or more of these causes. Nevertheless, it is 

interesting to note that encroachment seems to be confined (with the exception of the anomalous 
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thickening of the SW) to the relatively more mesic eastern parts of the reserve. This pattern reflects 

what is being found within South Africa, in the sense that more cases of bush encroachment have 

been documented from mesic areas (O’Connor et al. 2014). 

RESTREND and the trend in RUE identified a decreasing trend in vegetation productivity in parts 

of Gordonia Plains Shrubveld and on dune-slopes in Gordonia Dunveld in the west of TKR. 

Standardised RESTREND values exhibited a continuous declining trend which suggests that a 

persistent driver has influenced this pattern. Since these areas have not been burned since 2000 and 

RESTREND analysis is able to exclude the effect of rainfall on vegetation productivity, the best 

explanation for the decline in productivity over time is that herbivory has reduced vegetation in 

these areas.  

RESTREND and RUE appear to be useful analytical methods in TKR where erratic rainfall has 

such a strong influence on annual productivity. However, several limitations in the use of 

RESTREND have been indicated, such as a reduction in statistical power when shorter periods of 

time are analysed (e.g. less than 16 growth seasons), and the strong influence of timing on 

degradation. Wessels et al. (2012) have therefore recommended validating the outcome or 

simulating the data to test its robustness. This has not been possible in the current study and would 

be a useful avenue for further research in order to improve confidence in the results.  

 

4.4 Limitations of the Study  

The Reliability of the Satellite EO Derived EVI as a Proxy for Plant Productivity 

Data derived from MODIS EVI presented biologically meaningful results. The spatial distribution 

and seasonal variation of EVI showed good accordance with field observation and known 

phenologies of the plants in the Kalahari. Also, results from this study aligned with those from 

earlier studies which used time-series MODIS EVI data in the Kalahari (Hüttich et al. 2009; 

Udelhoven et al. 2015). However, the EVI data derived from Landsat OLI were poorly correlated 

with vegetation cover values measured in the field, as was also the case in several previous studies 

which assessed the relationship between vegetation cover and Landsat-derived VI in the Kalahari 

(Palmer & van Rooyen 1998; van Rooyen 2000; Kong et al. 2015). In this study, with only 18 mm 

of rain having fallen in the year prior to the field survey, the severe drought experienced by TKR 

undoubtedly affected both the amount of vegetation cover observed in the field as well as the EVI 

values as determined from the satellite sensors. Therefore this relationship needs to be re-examined 

in an appropriate season and year with better rainfall. 
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Another issue to consider is the possibility that the EVI value could be influenced by vegetation 

type. For example, the relationship between the EVI value and plant cover estimated in the field in 

the Koranna-Langeberg Mountain Bushveld demonstrated a substantially different trend from other 

vegetation types. This difference might be seasonal or due to an unusual response of Koranna-

Langeberg Mountain Bushveld to the 2015 drought or due to the topographic effect in rough terrain 

(Matsushita et al. 2007; Sesnie et al. 2011).  Structural and functional trait differences between the 

plants that comprise different vegetation types, as well as the influence of soil background noise are 

potential additional explanations for these differences.  

 

Linkage between Plant Productivity and Degradation 

Throughout this study, degradation was defined as a change in productivity over time, but this 

might not equate directly to the process of degradation in the Kalahari. For example, if annuals and 

perennials demonstrated similar values of productivity in response to rainfall, analytical techniques 

would not be able to differentiate between degraded areas. In addition, an increase in unpalatable 

species would also not be indicated by these analyses. For example, field observations confirmed 

that the density of the unpalatable woody shrub Crotalaria sp. was distinctly higher on a livestock 

farm just outside the boundary fence of TKR, but the difference was not captured by the VI.  

Additionally, this study did not distinguish woody and herbaceous components of plant productivity. 

Therefore, the observed change in plant productivity does not explicitly link to particular growth 

forms. Several remote sensing studies successfully decomposed woody and herbaceous NDVI 

signals from time series data using differences in inter-seasonal variation (Lu et al. 2003; Blanco et 

al. 2016). To understand the extent of potential bush encroachment in the eastern part of TKR, such 

analytical methods should be employed to further refine the analysis.  

 

Time Frame of the Study  

The study period which covered the years 2000-2015 may not be long enough to understand 

vegetation dynamics in the Kalahari. For example, the maximum number of fires which burned at a 

location in TKR was only two and it was therefore not possible to make robust assessments of the 

impact of fire or to evaluate the effects of a change in fire frequency on the vegetation. Additionally, 

meteorological records indicate that there are rainfall ‘cycles’ in Southern Africa, which involve 

alternating wet and dry periods at decadal intervals (Thomas & Paul 1991; Mishra et al. 2015a). 
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Moreover, the process of vegetation recovery from degradation is extremely slow in the Kalahari 

and does not occur at time scales which are of relevance to the land owner (van Rooyen 2000). For 

these reasons, a fuller understanding of how the vegetation of the Kalahari responds to rainfall, 

herbivory and fire will require several decades of data collection.  

 

4.5 Management Implications and Further Research  

Based on the findings and limitations of this study the following management implications and 

future research recommendations are suggested:  

1. Bush encroachment was the biggest observed change on vegetation in the past 15 years, with 

implications for stocking density, animal composition, fire frequencies, and tourism. Further 

research should aim to evaluate the rate of increase, relative intensity, extent, likely triggers, and 

possible control measures of bush encroachment in TKR in relation to surrounding areas.  

2. The effects of past farming practices were still apparent on vegetation some 20 years after the 

establishment of TKR, particularly around artificial waterholes and infrastructure. Management 

practices in the past 15 years have not altered the patterns of plant productivity in these 

degraded areas suggesting that more proactive management intervention might be required to 

enable a reversion of these areas to their former state. This result highlighted the sensitivity and 

irreversibility of severe degradation in the Kalahari environment.  

3. Fire was not likely to be a management issue except in the south eastern part of TKR in 

Koranna-Langeberg Mountain Bushveld, or if actively utilized in order to control woody 

thickening. 

4. The high stocking rates in the Sable and Roan breeding camps have resulted in notable 

degradation and should be closely monitored in order to prevent an irreversible change in 

vegetation cover similar to other severely degraded areas in TKR.  

5. The change in vegetation productivity outlined in this study needs to be interpreted within the 

context of longer-term vegetation dynamics in the Kalahari, including the effects of periodic wet 

and dry spells and extreme episodic events. Historical aerial photographs and Landsat images 

which extend the time frame of study allow us to answer questions relating to, for example, the 

impacts of changing land use practices, processes of bush encroachment, and the effects of 

artificial water points on the vegetation. Such investigations may help to isolate the effects of 
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past farming practices from more recent impacts caused by reintroduced wildlife or climate 

change at TKR. 

6. The results of RUE and RESTREND need to be verified using satellite images or aerial 

photographs taken before the year 2000. The areas where changes were indicated should be 

targeted for further investigation and long-term observation, as well as field based surveys at the 

species level. These should include demographic surveys of woody shrub species in thicket, and 

veld condition assessments in more grassy habitats in order to supplement the degradation study.  

7. The relationship between VI (including NDVI and EVI) and plant productivity needs to be 

analysed under different conditions (e.g. soil types, vegetation types and seasons) in the 

Kalahari to evaluate the potential as well as the limitations of EO derived VI. 
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5 Conclusions 

Using MODIS satellite derived time-series data, an analysis of long-term spatial and temporal 

change in vegetation productivity was conducted for the 100 000 hectare Tswalu Kalahari Reserve 

(TKR). Rainfall demonstrated a strong positive correlation with EVI values, a satellite derived 

indicator of plant productivity, and rainfall was therefore identified as the principal driver of plant 

productivity in TKR. The relationships between EVI values in individual vegetation types and 

rainfall as well as phenological and productivity metrics varied, suggesting that differences in 

species composition, structure and function, and soil type, may have an important influence the EVI 

values. Fire occurred only infrequently within the Korannaberg Mountains during the recorded 

period, and its influence on vegetation productivity was therefore considered to be minor.  

Results of the RESTREND and RUE analyses suggested that an increase in plant productivity in the 

woody shrub-dominated vegetation in the eastern and south western parts of TKR may be due to an 

ongoing process of bush encroachment which browsers are unable to contain. In contrast, 

vegetation productivity has declined in small areas of Gordonia Duneveld and Gordonia Plains 

Shrubveld in the western part of TKR, implying possible degradation due to overgrazing. While the 

drivers of these changes were sometimes difficult to pin down, the extent of degradation within the 

Roan Sable breeding camps allowed for greater confidence in the speculation that stocking rates in 

this area are having a notable negative effect on vegetation cover and productivity. However, in all 

cases verifications of these findings are recommended through field-based monitoring programmes.   

The effect on general vegetation productivity of a switch in land-use from livestock farming to a 

game reserve was not identified. However, field observations indicated severe, spatially discrete 

degradation in the form of piospheres around historical artificial water points and abandoned 

infrastructure. These disturbances probably originated in the 1980s, prior to the establishment of the 

game reserve. These findings indicate that severely degraded areas might not recover without active 

management intervention, such as have been successfully employ in other arid locations (Carrick & 

Krüger 2007) .  
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Appendices 

Appendix A   The phenometrics quantified by TIMESAT between the 2001-02 and 2014-15 
growth seasons. 

 

Fig. A1. Maps of the phenological metrics between the 2001-02 and 2014-
15 growth seasons quantified by TIMESAT. ‘Day of the year’ was 
established from the 1st of January with any number greater than 365 days 
indicating the subsequent year, and so forth.  
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Fig. A2 Maps of the productivity metrics between 2001-02 and 2014-15 growth seasons quantified 
by TIMESAT. 

  

Mean Coefficient of variation 
A

m
pl

itu
de

 
B

as
e 

M
ax

im
um

 v
al

ue
 



59 
 

 

            

Fig. A3 Maps of the productivity metrics between 2001-02 and 2014-15 growth seasons quantified 
by TIMESAT. 
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Table A1 Definitions of the metrics of TIMESAT (after Eklundh & Jönsson 2012 and Wessels et al. 

2011). The letters in parentheses corresponds to the key in Fig. 2.3.  

Phenology metrics Productivity metrics 

(a)  beginning of season; time at which the left 
edge has increased to a user-defined level 
(20%) as measured from the left minimum 
level. 

(b) end of the season; time at which the right 
edge has decreased to a user defined level 
(20%) as measured from the right minimum 
level. 

(c)  length of season; time from the start to the 
end of the season. 

(d)  base value; given as the average of the left 
and right minimum values. 

(e)  time of middle of the season; computed as 
the mean value of the times for which, 
respectively, the left edge has increased to the 
80 % level and the right edge has decreased to 
the 80 % level. 

(f)  maximum value; largest data value for the 
fitted function during the season. 

(g)  seasonal amplitude; difference between (f) the 
maximum value and (d) the base value. 

(h)  small integrated value; integral of the 
difference between the function describing the 
season and the base level from season start to 
season end. 

(h+i)  large integrated value; integral of the 
function describing the season from the season 
start to the season end. Note that the large integral 
has no meaning when part of the fitted function is 
negative. 

 

 

 

Table A2 Average + standard deviation of phenology and productivity metrics for the 2000-01 -
2014-15 growth seasons computed by TIMESAT for the vegetation types in Tswalu Kalahari 
Reserve. 

Vegetation types 

Phenology metrics Productivity metrics 

Beginning 
of season 
(day of 

the year) 

End of 
season 
(day of 

the year) 

Length of 
season 
(day) 

Time of 
middle 
season  
(day of 

the year) 

Amplitude Base Maximum 
value 

Small 
integrated 

value 

Large 
integrated 

value 

Koranna-Langeberg  
Mountain Bushveld 375.5 ± 7.6 624.74 ± 

14.1 
249.2 ± 

13.8 
489.9 ± 

9.0 
0.1164 ± 
0.0108 

0.1072 ± 
0.0068 

0.2226 ± 
0.0136 

1.207 ± 
0.0172 

3.091 ± 
0.2470 

Gordonia Duneveld 375.4 ± 9.1 583.3 ± 7.2 207.9 ± 

10.3 
471.7 ± 

7.0 
0.0996 ± 
0.0107 

0.1137 ± 
0.0037 

0.2099 ± 
0.0123 

0.8128 ± 
0.0915 

2.530 ± 
0.1456 

Gordonia Plains 
Shrubveld 

367.9 ± 

10.8 582.7 ± 7.4 214.8 ± 
11.5 

473.6 ± 
6.7 

0.0900 ± 
0.0105 

0.1085 ± 
0.0046 

0.1974 ± 
0.0112 

0.7609 ± 
0.0834 

2.428 ± 
0.1246 

Kathu Bushveld 371.1 ± 

10.1 
585.3 ± 

10.1 
214.1 ± 

13.0 
472.0 ± 

8.1 
0.1063 ± 

0.101 
0.1120 ± 
0.0047 

0.2158 ± 
0.0110 

0.8989 ± 
0.0824 

2.631 ± 
0.1595 

Olifantshoek Plains 
Thornveld 

373.8 

±10.8 
592.9 ± 

13.4 
219.1 ± 

15.8 
475.8 ± 

9.2 
0.1173 ± 
0.0103 

0.1136 ± 
0.0056 

0.2278 ± 
0.0134 

1.008 ± 
0.119 

2.806 ± 
0.2389 
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Appendix B Vegetation maps of Tswalu Kalahari Reserve 

 

Fig. B1 Comparison of the vegetation maps of Tswalu Kalahari Reserve adapted from Mucina & 
Rutherford (2006, left) and Landsat-based vegetation map (right) 
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Appendix C Field survey data 

 

Fig. C1 Locations of the degraded sites (orange dots) in Tswalu Kalahari Reserve (TKR) assessed 
by field observations in November 2015.  
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Table C1 Results of transect surveys to test the relationship between Landsat OLI derived EVI 
values and plant cover in Tswalu Kalahari Reserve. Abbreviations for the vegetation types are as 
follows: KM = Koranna Langeberg Mountain Bushveld, GD = Gordonia Duneveld, GS = Gordonia 
Shrubveld, KB=Kathu Bushveld, OT = Olifantshoek Thornveld.  Geographical coordinates are 
shown as decimal degree in WGS 84.   

  

Tree Shrub Grass Herb Sub total Soil Rocks Sub total
1 22.40867 -27.30578 GD 0.138 0.0 5.4 15.1 1.1 21.5 78.5 0.0 78.5
2 22.39781 -27.26121 GD 0.138 0.0 3.2 17.2 3.2 23.7 76.3 0.0 76.3
3 22.40110 -27.23355 GD 0.137 0.0 12.9 8.6 2.2 23.7 76.3 0.0 76.3
4 22.39064 -27.22066 GD 0.147 0.0 9.7 25.8 3.2 38.7 61.3 0.0 61.3
5 22.37847 -27.21617 GD 0.142 0.0 15.1 24.7 1.1 40.9 59.1 0.0 59.1
6 22.34564 -27.23166 GD 0.137 0.0 5.4 16.1 1.1 22.6 77.4 0.0 77.4
7 22.36634 -27.14047 GD 0.140 0.0 26.9 23.7 1.1 51.6 48.4 0.0 48.4
8 22.36246 -27.09555 GD 0.131 0.0 17.2 12.9 6.5 36.6 63.4 0.0 63.4
9 22.39381 -27.13505 GD 0.132 0.0 0.0 32.3 0.0 32.3 67.7 0.0 67.7

10 22.38269 -27.31281 GD 0.142 5.4 9.7 15.1 2.2 32.3 67.7 0.0 67.7
11 22.35786 -27.31522 GD 0.144 0.0 7.5 20.4 2.2 30.1 69.9 0.0 69.9
12 22.31866 -27.48674 GD 0.142 0.0 8.6 29.0 5.4 43.0 57.0 0.0 57.0
13 22.36570 -27.18732 GS 0.161 0.0 36.6 11.8 4.3 52.7 47.3 0.0 47.3
14 22.31987 -27.30773 GS 0.141 5.4 15.1 15.1 0.0 35.5 64.5 0.0 64.5
15 22.31119 -27.31702 GS 0.141 0.0 3.2 16.1 6.5 25.8 74.2 0.0 74.2
16 22.25320 -27.30970 GS 0.148 0.0 23.7 6.5 2.2 32.3 67.7 0.0 67.7
17 22.23088 -27.31992 GS 0.135 0.0 21.5 17.2 0.0 38.7 61.3 0.0 61.3
18 22.22055 -27.31811 GS 0.143 0.0 14.0 9.7 1.1 24.7 75.3 0.0 75.3
19 22.26418 -27.34237 GS 0.139 0.0 21.5 0.0 28.0 49.5 50.5 0.0 50.5
20 22.26670 -27.35020 GS 0.134 0.0 30.1 15.1 1.1 46.2 53.8 0.0 53.8
21 22.28069 -27.37986 GS 0.138 0.0 12.9 23.7 1.1 37.6 62.4 0.0 62.4
22 22.26831 -27.38539 GS 0.136 3.2 4.3 22.6 10.8 40.9 59.1 0.0 59.1
23 22.30091 -27.37073 GS 0.146 4.3 24.7 6.5 1.1 36.6 63.4 0.0 63.4
24 22.30471 -27.38505 GS 0.139 0.0 17.2 32.3 0.0 49.5 50.5 0.0 50.5
25 22.30901 -27.41534 GS 0.142 2.2 17.2 24.7 0.0 44.1 55.9 0.0 55.9
26 22.30464 -27.45654 GS 0.148 0.0 44.1 12.9 0.0 57.0 43.0 0.0 43.0
27 22.30514 -27.47279 GS 0.146 0.0 35.5 26.9 1.1 63.4 36.6 0.0 36.6
28 22.30473 -27.48931 GS 0.147 0.0 22.6 22.6 3.2 48.4 51.6 0.0 51.6
29 22.33536 -27.48631 GS 0.143 0.0 36.6 0.0 11.8 48.4 51.6 0.0 51.6
30 22.35511 -27.43819 GS 0.139 0.0 11.8 35.5 2.2 49.5 50.5 0.0 50.5
31 22.43322 -27.13980 KM 0.094 4.3 28.0 15.1 0.0 47.3 10.8 41.9 52.7
32 22.44170 -27.13998 KM 0.106 0.0 24.7 30.1 1.1 55.9 2.2 41.9 44.1
33 22.44015 -27.13729 KM 0.111 0.0 22.6 25.8 0.0 48.4 8.6 43.0 51.6
34 22.44194 -27.13511 KM 0.113 0.0 10.8 23.7 3.2 37.6 29.0 33.3 62.4
35 22.46232 -27.21262 KM 0.092 0.0 17.2 40.9 0.0 58.1 2.2 39.8 41.9
36 22.45445 -27.21270 KM 0.096 0.0 31.2 26.9 0.0 58.1 1.1 40.9 41.9
37 22.45918 -27.29660 KM 0.129 0.0 28.0 30.1 2.2 60.2 4.3 35.5 39.8
38 22.46099 -27.29604 KM 0.141 0.0 46.2 11.8 1.1 59.1 20.4 20.4 40.9
39 22.46119 -27.28845 KM 0.111 0.0 9.7 16.1 4.3 30.1 20.4 49.5 69.9
40 22.45664 -27.28796 KM 0.106 0.0 20.4 9.7 6.5 36.6 24.7 38.7 63.4
41 22.41330 -27.28840 KB 0.138 0.0 15.1 8.6 2.2 25.8 74.2 0.0 74.2
42 22.41062 -27.17144 KB 0.136 3.2 7.5 16.1 0.0 26.9 73.1 0.0 73.1
43 22.43547 -27.17336 KB 0.137 1.1 3.2 15.1 2.2 21.5 78.5 0.0 78.5
44 22.43117 -27.14470 KB 0.140 0.0 0.0 37.6 0.0 37.6 62.4 0.0 62.4
45 22.46022 -27.19097 KB 0.137 0.0 4.3 50.5 3.2 58.1 41.9 0.0 41.9
46 22.43949 -27.18036 KB 0.139 0.0 12.9 30.1 0.0 43.0 57.0 0.0 57.0
47 22.46671 -27.15462 KB 0.138 4.3 0.0 29.0 2.2 35.5 64.5 0.0 64.5
48 22.44045 -27.23072 KB 0.135 9.7 10.8 14.0 0.0 34.4 65.6 0.0 65.6
49 22.46903 -27.21580 KB 0.137 7.5 11.8 25.8 0.0 45.2 54.8 0.0 54.8
50 22.42208 -27.31133 KB 0.134 0.0 3.2 5.4 6.5 15.1 84.9 0.0 84.9
51 22.41935 -27.31082 KB 0.130 0.0 0.0 10.8 3.2 14.0 86.0 0.0 86.0
52 22.46623 -27.16410 KB 0.144 4.3 0.0 38.7 0.0 43.0 57.0 0.0 57.0
53 22.49120 -27.28813 OT 0.148 0.0 62.4 5.4 0.0 67.7 32.3 0.0 32.3
54 22.49245 -27.29137 OT 0.144 0.0 22.6 4.3 0.0 26.9 73.1 0.0 73.1
55 22.43771 -27.18254 OT 0.142 0.0 19.4 16.1 4.3 39.8 60.2 0.0 60.2
56 22.44766 -27.25014 OT 0.157 5.4 24.7 15.1 0.0 45.2 54.8 0.0 54.8
57 22.44432 -27.24909 OT 0.149 4.3 22.6 9.7 2.2 38.7 61.3 0.0 61.3
58 22.42907 -27.24112 OT 0.134 4.3 26.9 16.1 0.0 47.3 52.7 0.0 52.7
59 22.42696 -27.28935 OT 0.136 0.0 12.9 24.7 0.0 37.6 62.4 0.0 62.4
60 22.50690 -27.30611 OT 0.151 0.0 39.8 8.6 0.0 48.4 51.6 0.0 51.6
61 22.50443 -27.30343 OT 0.144 0.0 60.2 9.7 0.0 69.9 30.1 0.0 30.1
62 22.44726 -27.28914 OT 0.133 0.0 21.5 5.4 1.1 28.0 72.0 0.0 72.0

Bare ground (%)Vegetation 
type

No. Longitude Latitude EVI
Plant cover (%)
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Appendix D Interpolated rainfall surfaces 

 

 

Fig. D1 A composite of interpolated annual rainfall surface contour maps computed by ordinarily 

kriging for the growth seasons (October - September) in Tswalu Kalahari Reserve.  

  

2001-02 2002-03 2003-04 2004-05 

2005-06 2006-07 2007-08 2008-09 

2009-10 2010-11 2011-12 2012-13 

2013-14 



65 
 

Appendix E Degradation trend analysis 

 

Fig. E1 Mean of relative rain use efficiency (RUE) in Tswalu Kalahari Reserve between 2001-02 
and 2013-14 growth seasons, including the drought season of 2006-07. High RUE values (green) 
indicate higher efficiency and a decrease in this efficiency is assumed to occur in association with 
land degradation. 

  

Fig. E2 Slope of the regression analysis of RESTREND including the drought season of 2006-07. 
Areas where significant trends were not found were displayed as the grey shaded colour.  
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Appendix F Past and current Landsat images 

 
Fig. F1 Comparisons of true colour satellite images from Landsat TM and OLI obtained at different 
times in the central part of Tswalu Kalahari Reserve. The image on the left was obtained in 19 
March 1989 and the image on the right was taken on 02 April 2014. Both images show a piosphere 
effect around artificial water points (indicated with red circles), suggesting that the effect was 
initiated before the area became a game reserve. 

 




