SEEC Toolbox seminars Animal movement modelling with moveHMM

Theoni Photopoulou theoni.photopoulou@uct.ac.za

29 June 2017

Brief overview

Animal movement data

What is it Why is it interesting What do we want to know

Analysing movement data with HMMs

What are they Why they are useful What you can and cannot do with HMMs

Example with wild haggis data using moveHMM

Useful resources

Animal movement data What it is?

Solute shift of constants

Animal movement data What it is?

Main features

- \Rightarrow Tags can collect very large volumes of data
- \Rightarrow Animal tracks have specific characteristics that set them apart
 - Spatial and temporal structure
- \Rightarrow Analysis: step length and turning angle

Main features

- \Rightarrow Tags can collect very large volumes of data
- \Rightarrow Animal tracks have specific characteristics that set them apart
 - Spatial and temporal structure
- \Rightarrow Analysis: step length and turning angle $_{(Figure \; 1 \; from \; moveHMM \; vignette)}$

Main features

Animal movement data Why it is interesting?

- \Rightarrow Locations don't just tell us where and when we observed an animal
- \Rightarrow We can convert locations into quantities that are measurable and that tell us something about animal behaviour

Animal movement data Why it is interesting?

- \Rightarrow Locations don't just tell us where and when we observed an animal
- \Rightarrow We can convert locations into quantities that are measurable and that tell us something about animal behaviour
- \Rightarrow Step length tells us about speed
- \Rightarrow Turning angle tells us about straightness

What do we want to know?

 \Rightarrow A lot of the time when collecting tracking data we want to know what the animal is "doing"

What do we want to know?

 \Rightarrow A lot of the time when collecting tracking data we want to know what the animal is "doing"

⇒ Describe different movement modes or "states" along a track
1 link state to the conditions at that location
2 loosely connect states to functions or behaviours

 \Rightarrow One way of doing this is with HMMs

What do we want to know?

- \Rightarrow A lot of the time when collecting tracking data we want to know what the animal is "doing"
- ⇒ Describe different movement modes or "states" along a track
 - 1 link state to the conditions at that location
 - 2 loosely connect states to functions or behaviours
- \Rightarrow One way of doing this is with HMMs

DISCLAIMER! HMMS ARE DATA-DRIVEN THERE IS NO GUARANTEE STATES WILL CORRESPOND TO BEHAVIOURS

What are Hidden Markov Models?

 $\Rightarrow\,$ HMMs are time series models made up of two processes or levels

What are Hidden Markov Models?

- $\Rightarrow\,$ HMMs are time series models made up of two processes or levels
 - 1 Observations
 - 2 The process we want to learn about, but cannot observe

What are Hidden Markov Models?

- $\Rightarrow\,$ HMMs are time series models made up of two processes or levels
 - 1 Observations
 - 2 The process we want to learn about, but cannot observe

What are Hidden Markov Models?

\Rightarrow You assume a relationship between

- 1 the observations and unobserved "states" (most likely state)
- 2 the sequence of states (transition probabilities)

interest in the second state of the second sta

Analysing movement data with HMMs What are Hidden Markov Models?

⇒ State process takes finite possible values, 1, ..., S⇒ Value of S_t selects which of S component distributions generates observations Z_t

44 (

Analysing movement data with HMMs What are Hidden Markov Models?

 \Rightarrow The distribution that generates an observation depends on the state of the underlying and unobserved Markov process 1

¹Zucchini, MacDonald and Langrock 2016, HMMs for Times Series

2-state HMM: observation-generating process

Why are they useful?

- ⇒ Serial dependence naturally accounted for because the sequence of states is a Markov chain
- \Rightarrow It is characterised by the Markov property
 - Conditional on the current state, the future is independent of the past

Why are they useful?

- ⇒ Serial dependence naturally accounted for because the sequence of states is a Markov chain
- \Rightarrow It is characterised by the Markov property
 - Conditional on the current state, the future is independent of the past

Haggis example

The wild haggis (Haggis scoticus)

The wild Haggis is a fictional animal that inhabits the Scottish Highlands.

It's left leg is longer than it's right leg.

Certain slopes are optimal for movement and outside of that movement becomes a challenge.

Haggis example

The wild haggis (Haggis scoticus)

What you can and cannot do with moveHMM

Can

- \Rightarrow Fit a model to the step and turn distributions
- \Rightarrow Find the most likely state for each point
- $\Rightarrow\,$ Carefully interpret states in a meaningful biological way
- $\Rightarrow\,$ Find the effect of covariates on transition probabilities

Cannot

- \Rightarrow Fit a model to irregularly sampled data
- \Rightarrow Assume that states correspond to behaviours
- \Rightarrow Assume the model is valid without checking it
- \Rightarrow Account for location uncertainty (but see <code>momentuHMM</code>)

HMM and movement ecology resources

Groups

- Link British Ecological Society Movement Ecology Special Interest Group
- ► Link ecoHMM group ► Link AniMove

Books

 Link Hidden Markov Models for Time Series: An Introduction Using R, Second Edition. 2016. Walter Zucchini, Iain L. MacDonald, Roland Langrock

• Link Animal Movement: Statistical Models for Telemetry Data. 2017. Mevin B. Hooten, Devin S. Johnson, Brett T. McClintock, Juan M. Morales

Papers

 Link Langrock et al. 2012. Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 93(11): 2336–2342

• Link Michelot et al. 2016. moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods in Ecology and Evolution 7(11): 1308–1315

Link McClintock 2017. Incorporating Telemetry Error into Hidden Markov Models of Animal Movement Using Multiple Imputation. JABES doi:10.1007/s13253-017-0285-6

Link Towner et al. 2016. Sex-specific and individual preferences for hunting strategies in white sharks. Functional Ecology 30: 1397–1407

Link McKellar et al. 2015. Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird. Behavioural Ecology (1): 148-157

