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What are trees? :)

I Trees are a type of supervised statistical learning method

I Very general: methods that relate a response variable y to a
set of predictors X, with the aim of predicting the response
for future observations

I Alternative to linear and logistic regression, neural networks,
etc

I Regression trees for continuous response, classification for
discrete
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Example

I We will look at counts of Aloe dichotoma (now Aloidendron
dichotomum) collected by Jack et al. (2016)

I Extensive roadside survey returned 1,138 transects containing
aloes

I Our goal is to predict the number of trees in a transect

I Predictors are latitude, longitude, MAP, MAT
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Example

> aloe <- read.csv("aloedichotoma.csv", header=TRUE)

> head(aloe)

ntrees latitude longitude MAP MAT

1 4 -21.14909 14.69328 111 21.7

2 129 -21.47578 15.04399 101 22

3 25 -21.47936 15.1299 130 21.6

4 245 -21.49967 15.04117 95 21.9

5 16 -21.18775 14.67602 108 21.6

We begin by considering only latitude and longitude as potential

predictors
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Example
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Example Regression Tree
|Latitude < −31.0531

Longitude < 19.3866 Latitude < −27.0296

Longitude < 21.3125

Longitude < 19.763

Latitude < −29.6662

Longitude < 22.0091

Latitude < −26.6448

Latitude < −24.7375

Longitude < 16.6712

7.427 3.713

3.518

1.181 4.464

1.658 3.313

2.205

4.493 2.811

2.648

Internal nodes�
�
�
�
��

Leaves/
Terminal nodes

B
B
BM

�
�
��

Branches� -
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Example Regression Tree
|Latitude < −31.0531

Longitude < 19.3866 Latitude < −27.0296

Longitude < 21.3125

Longitude < 19.763

Latitude < −29.6662

Longitude < 22.0091

Latitude < −26.6448

Latitude < −24.7375
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Example Regression Tree
|Latitude < −31.0531

Longitude < 19.3866 Latitude < −27.0296

Longitude < 21.3125

Longitude < 19.763

Latitude < −29.6662

Longitude < 22.0091

Latitude < −26.6448

Latitude < −24.7375

Longitude < 16.6712

7.427 3.713

3.518

1.181 4.464

1.658 3.313

2.205

4.493 2.811

2.648

Latitude ≥ 31.05
-
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Example Regression Tree
|Latitude < −31.0531

Longitude < 19.3866 Latitude < −27.0296

Longitude < 21.3125

Longitude < 19.763

Latitude < −29.6662

Longitude < 22.0091

Latitude < −26.6448

Latitude < −24.7375

Longitude < 16.6712

7.427 3.713

3.518

1.181 4.464

1.658 3.313

2.205

4.493 2.811

2.648

Predicted log trees

if lat < 31.05 &

lon ≥ 19.38

�
�
��
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Partitioned Feature Space

●
●● ●● ●

●

●●●

●
●

●● ●● ●●●●● ●

● ●●

●●● ●

●●●●●●●
●

●
●●

●● ●●●
●

● ●

●

●
●●

● ●

●

● ●●
●

●
● ●

● ●● ● ●●● ● ●●
● ●● ●● ●●● ●● ●

●● ● ● ●● ●● ●● ●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ●● ●● ●● ● ● ●● ●●●● ●● ● ●● ●●●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ●●●● ●● ● ●●● ● ●●● ●●● ●●●● ●●● ● ● ●●● ●● ●● ●● ●●● ●● ●● ●●● ● ●●● ●
●

●● ● ●
●● ● ●● ●●● ● ●● ●●● ●● ● ● ●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ● ●●● ●●●● ● ●● ●●●● ●● ● ● ●● ●●● ●● ●● ●●●● ● ●●●● ●●● ●● ●● ● ● ●●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●

● ● ●● ●●● ●●●●●● ● ●● ●● ●●●● ● ●●
●● ●● ●

●●●●●●

●● ●●●●

●●●

16 18 20 22

−
30

−
28

−
26

−
24

−
22

Predicted Log Abundance

Longitude

La
tit

ud
e

7.43 3.71

3.52

1.18

4.46

1.66 3.31

2.21

4.49 2.81

2.65

10 / 33



Recursive Binary Splitting

Regression Tree Partitioned Feature Space

X1 < t1

X1

X
2

t1

R1
R1 R2

R2

Need to choose splitting criterion (RSS)
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Recursive Binary Splitting

Regression Tree Partitioned Feature Space

X1 < t1

X2 < t2

X1

X
2

t1

t2

R1

R1

R2

R2

R3 R3
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Recursive Binary Splitting

Regression Tree Partitioned Feature Space

X1 < t1

X2 < t2 X1 < t3

X1

X
2

t1

t2

t3

R1

R1

R2

R2 R3

R3

R4

R4
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Recursive Binary Splitting

Regression Tree Partitioned Feature Space

X1 < t1

X2 < t2 X1 < t3

X2 < t4

X1

X
2

t1

t2

t3

t4

R1

R1

R2

R2 R3

R3

R4

R4

R5

R5

Need to choose stopping criterion
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Classification Trees

I Used to predict a categorical response

I Similar to regression trees, except the predicted value in a
region will now be the most commonly occurring class

I The class proportions in each terminal node give us an
indication of the reliability of the prediction

I Suggested splitting criteria: Gini index, deviance (not %
correct)
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Trees versus Linear Models

I We could use either logistic
regression or decision trees
for classification

I Which is better depends on
the problem

Logistic regression Classification Tree8.1 The Basics of Decision Trees 315
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FIGURE 8.7. Top Row: A two-dimensional classification example in which
the true decision boundary is linear, and is indicated by the shaded regions.
A classical approach that assumes a linear boundary (left) will outperform a de-
cision tree that performs splits parallel to the axes (right). Bottom Row: Here the
true decision boundary is non-linear. Here a linear model is unable to capture
the true decision boundary (left), whereas a decision tree is successful (right).

8.1.4 Advantages and Disadvantages of Trees

Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

▲ Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

▲ Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

▲ Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

▲ Trees can easily handle qualitative predictors without the need to
create dummy variables.
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Model validation
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Don’t overfit! Do validate!

I A model can be made to fit sample data arbitrarily well
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RSS = 0

I You are interested in how well your model does on unseen data

I Always do validation - always always always!
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Model validation

Best practice

1. Divide your dataset in 3
parts: training, validation
and test sets

2. Fit model on training data

3. Assess model on validation
data

4. Choose model with the
lowest validation error

5. Assess selected model on
test data for final model ⇐
this is your prediction error

Needs a lot of data

K-fold cross-validation

1. Divide data into K
equal-size folds

2. Fit model model to all data
excluding the kth fold

3. Assess performance using
the kth fold

4. Repeat for all folds

5. Combine validation errors
across folds

Most often k = 10. K = n, is
leave-one-out CV

19 / 33



Cross-Validation

Example: 4-fold cross-validation for the linear model

                      !
 6  0.26  1.39!
15  0.63  1.59!
 8  0.38  1.19!
16  0.66  1.57!
17  0.73  1.89!
 1  0.00  1.03!
18  0.84  1.80!
12  0.52  1.19!
 7  0.33  1.50!
20  0.99  1.99!
10  0.43  1.34!
 5  0.19  1.36!
11  0.49  1.59!
 9  0.38  1.27!
19  0.86  2.07!
13  0.55  1.62!
14  0.63  2.11!
 4  0.11  0.75!
 3  0.02  1.08!
 2  0.01  0.81!

x y

Randomise!
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Cross-Validation

Example: 4-fold cross-validation for the linear model

                      !
 6  0.26  1.39  1.24  0.023!
15  0.63  1.59  1.68  0.008!
 8  0.38  1.19  1.38  0.036!
16  0.66  1.57  1.71  0.021!
17  0.73  1.89  1.79  0.010!
 1  0.00  1.03!
18  0.84  1.80!
12  0.52  1.19!
 7  0.33  1.50!
20  0.99  1.99!
10  0.43  1.34!
 5  0.19  1.36!
11  0.49  1.59!
 9  0.38  1.27!
19  0.86  2.07!
13  0.55  1.62!
14  0.63  2.11!
 4  0.11  0.75!
 3  0.02  1.08!
 2  0.01  0.81!

x y

Training set

Test set

ŷ ê2

ŷ = 0.932 + 1.184x
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Cross-Validation

Example: 4-fold cross-validation for the linear model

                      !
 6  0.26  1.39  1.24  0.023!
15  0.63  1.59  1.68  0.008!
 8  0.38  1.19  1.38  0.036!
16  0.66  1.57  1.71  0.021!
17  0.73  1.89  1.79  0.010!
 1  0.00  1.03  0.87  0.026 !
18  0.84  1.80  2.02  0.046!
12  0.52  1.19  1.58  0.149!
 7  0.33  1.50  1.32  0.031!
20  0.99  1.99  2.22  0.053!
10  0.43  1.34!
 5  0.19  1.36!
11  0.49  1.59!
 9  0.38  1.27!
19  0.86  2.07!
13  0.55  1.62!
14  0.63  2.11!
 4  0.11  0.75!
 3  0.02  1.08!
 2  0.01  0.81!

x y

Training set

Test set

ŷ ê2

ŷ = 0.867 + 1.363x
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Cross-Validation

Example: 4-fold cross-validation for the linear model

                      !
 6  0.26  1.39  1.24  0.023!
15  0.63  1.59  1.68  0.008!
 8  0.38  1.19  1.38  0.036!
16  0.66  1.57  1.71  0.021!
17  0.73  1.89  1.79  0.010!
 1  0.00  1.03  0.87  0.026 !
18  0.84  1.80  2.02  0.046!
12  0.52  1.19  1.58  0.149!
 7  0.33  1.50  1.32  0.031!
20  0.99  1.99  2.22  0.053!
10  0.43  1.34  1.42  0.006!
 5  0.19  1.36  1.14  0.049!
11  0.49  1.59  1.48  0.011!
 9  0.38  1.27  1.36  0.010  !
19  0.86  2.07  1.92  0.023!
13  0.55  1.62!
14  0.63  2.11!
 4  0.11  0.75!
 3  0.02  1.08!
 2  0.01  0.81!

x y

Training set

Test set

ŷ ê2

ŷ = 0.921 + 1.154x
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Cross-Validation

Example: 4-fold cross-validation for the linear model

                      !
 6  0.26  1.39  1.24  0.023!
15  0.63  1.59  1.68  0.008!
 8  0.38  1.19  1.38  0.036!
16  0.66  1.57  1.71  0.021!
17  0.73  1.89  1.79  0.010!
 1  0.00  1.03  0.87  0.026 !
18  0.84  1.80  2.02  0.046!
12  0.52  1.19  1.58  0.149!
 7  0.33  1.50  1.32  0.031!
20  0.99  1.99  2.22  0.053!
10  0.43  1.34  1.42  0.006!
 5  0.19  1.36  1.14  0.049!
11  0.49  1.59  1.48  0.011!
 9  0.38  1.27  1.36  0.010  !
19  0.86  2.07  1.92  0.023!
13  0.55  1.62  1.55  0.005!
14  0.63  2.11  1.63  0.232!
 4  0.11  0.75  1.12  0.135!
 3  0.02  1.08  1.03  0.002!
 2  0.01  0.81  1.02  0.044!

x y

Test set

ŷ ê2

Training set
ŷ = 1.012 + 0.985x
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Cross-Validation

Example: 4-fold cross-validation for the linear model

                      !
 6  0.26  1.39  1.24  0.023!
15  0.63  1.59  1.68  0.008!
 8  0.38  1.19  1.38  0.036!
16  0.66  1.57  1.71  0.021!
17  0.73  1.89  1.79  0.010!
 1  0.00  1.03  0.87  0.026 !
18  0.84  1.80  2.02  0.046!
12  0.52  1.19  1.58  0.149!
 7  0.33  1.50  1.32  0.031!
20  0.99  1.99  2.22  0.053!
10  0.43  1.34  1.42  0.006!
 5  0.19  1.36  1.14  0.049!
11  0.49  1.59  1.48  0.011!
 9  0.38  1.27  1.36  0.010  !
19  0.86  2.07  1.92  0.023!
13  0.55  1.62  1.55  0.005!
14  0.63  2.11  1.63  0.232!
 4  0.11  0.75  1.12  0.135!
 3  0.02  1.08  1.03  0.002!
 2  0.01  0.81  1.02  0.044!

x y ŷ ê2

CV error =
1

n

nX

i=1

ê2
i

= 0.046
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Extensions
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Bagging

   y   x1   x2 
1  0  2.9  3.5 
2  1  7.9  3.7 
3  0  4.1  2.9 
4  0  8.8  0.8 
5  1  9.4  3.7 

   y   x1   x2 
3  0  4.1  2.9 
2  1  7.9  3.7 
3  0  4.1  2.9 
4  0  8.8  0.8 
5  1  9.4  3.7 

   y   x1   x2 
1  0  2.9  3.5 
2  1  7.9  3.7 
3  0  4.1  2.9 
5  1  9.4  3.7 
5  1  9.4  3.7 

   y   x1   x2 
4  0  8.8  0.8 
2  1  7.9  3.7 
5  1  9.4  3.7 
4  0  8.8  0.8 
5  1  9.4  3.7 

obs   1 2 3 4 5   
yhat  1 0 0 0 1 

obs   1 2 3 4 5   
yhat  0 1 0 0 1 

obs   1 2 3 4 5   
yhat  1 1 0 0 1 

obs   1 2 3 4 5   
yhat  1 1 0 0 1 

Bootstrap
sampling

Training
data

Grow
trees

Predict

Combine
predictions
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Why does bagging help?

Single Classification Tree Bagging
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Cross-validation for bagging: Out-of-Bag Error

   y   x1   x2 
1  1.1  2.9  3.5 
2  1.7  7.9  3.7 
3  2.3  4.1  2.9 
4  1.8  8.8  0.8 

   y   x1   x2 
2  1.7  7.9  3.7 
2  1.7  7.9  3.7 
3  2.3  4.1  2.9 
1  1.1  2.9  3.5 

   y   x1   x2 
4  1.8  8.8  0.8 
2  1.7  7.9  3.7 
4  1.8  8.8  0.8 
4  1.8  8.8  0.8 

   y   x1   x2 
1  1.1  2.9  3.5 
3  2.3  4.1  2.9 
3  2.3  4.1  2.9 
1  1.1  2.9  3.5 

   y   x1   x2 
1  1.1  2.9  3.5 
2  1.7  7.9  3.7 
1  1.1  2.9  3.5 
2  1.7  7.9  3.7 

   y   x1   x2 
4  1.8  8.8  0.8 
2  1.7  7.9  3.7 
2  1.7  7.9  3.7 
4  1.8  8.8  0.8 

  yhat1  
1   
2   
3 
4   2.0 

  yhat2  
1   1.3  
2   
3   2.1 
4    

  yhat3  
1   
2   1.8 
3 
4   1.7 

  yhat4  
1   
2   
3   1.9 
4   2.8 

  yhat5  
1   1.0 
2   
3   2.3 
4    

B
o
ot

st
ra

p
sa

m
p
le

s
O

O
B

p
re

d
ic

ti
on

s    yhat    e2   
1   1.2  0.01 
2   1.8  0.01   
3   2.1  0.04 
4   2.2  0.16 

OOB error
= 0.22
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Random forests

I A small tweak that decorrelates the trees produced by bagging

I Each time a split is considered, a random sample of m < p
predictors are chosen as split candidates

I Bagging is a special case with m = p
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Boosting

I Bagging and RFs: each tree is grown independently of all
other trees

I Boosting: grows trees sequentially using information from
previously trees

I First, grow a regression tree with a small number of splits, d

I The residuals of this tree are then treated as the response
variable and used to grow another tree

I And so on. . .
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Boosting

         
33.40 2.88 6.00 
35.88 7.88 3.33 
32.71 4.09 4.89 
56.12 8.83 9.54 
42.82 9.40 4.83 

            
     33.40 
     35.88 
     32.71 
     56.12 
     42.82 

      
 26.82 33.13 
 35.72 35.52 
 26.82 32.45 
 43.63 55.68 
 35.72 42.46 

          
26.55 32.86 
35.36 35.17 
26.55 32.18 
43.20 55.25 
35.36 42.11 

          
29.66 32.57 
29.66 34.87 
29.66 31.88 
48.51 54.77 
29.66 41.81 

…
Boosting algorithm with

d = 2 and � = 0.01

r̂(1) r(1)

r̂(2) r(2)

r̂(3) r(3)

y x1 x2 r(0)

(X, r(0))

(X, r(1))(X, r(2))

(X, r(3))

ŷ = �

BX

b=1

r̂(b)
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Effects of predictor variables
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Variable Importance

I No inference with trees – no significance testing

I Variable “importance”: amount by which the splitting
criterion improved

I Only a relative measure, and no how information
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Constructing Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

       y    x1   x2   x3 
1  35.70  2.17 1.77 5.78 
2  52.28  2.42 5.63 6.46 
3  38.18  0.78 2.74 4.36 
4  35.99  0.09 3.04 3.45 
5  21.19  2.21 0.50 3.40 
6  54.38 -2.64 3.63 6.81 
7  23.59  2.26 0.23 4.52 
8  32.27  0.45 1.34 5.62 
9  47.84  0.43 4.24 5.61 
10 38.87 -0.84 2.60 4.84 

Construct a partial
dependence plot for X3

Predictive ModelData
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Constructing Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

3 4 5 6 7

32
36

40
44

       y    x1   x2   x3   yhat 
1  35.70  2.17 1.77    3  25.87 
2  52.28  2.42 5.63    3  42.86 
3  38.18  0.78 2.74    3  32.48 
4  35.99  0.09 3.04    3  34.93 
5  21.19  2.21 0.50    3  20.10 
6  54.38 -2.64 3.63    3  41.99 
7  23.59  2.26 0.23    3  18.80 
8  32.27  0.45 1.34    3  26.70 
9  47.84  0.43 4.24    3  39.79 
10 38.87 -0.84 2.60    3  34.44 
 
                          31.80 

ŷ(X3 = 3, X�3 = x�3,j)

ŷ(X3 = 3) =

X3 30 / 33



Constructing Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

3 4 5 6 7

32
36

40
44

       y    x1   x2   x3   yhat 
1  35.70  2.17 1.77    4  28.86 
2  52.28  2.42 5.63    4  45.85 
3  38.18  0.78 2.74    4  35.47 
4  35.99  0.09 3.04    4  37.93 
5  21.19  2.21 0.50    4  23.09 
6  54.38 -2.64 3.63    4  44.98 
7  23.59  2.26 0.23    4  21.79 
8  32.27  0.45 1.34    4  29.69 
9  47.84  0.43 4.24    4  42.78 
10 38.87 -0.84 2.60    4  37.43 
 
                          34.79 ŷ(X3 = 4) =

ŷ(X3 = 4, X�3 = x�3,j)

X3 30 / 33



Constructing Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

3 4 5 6 7

32
36

40
44

       y    x1   x2   x3   yhat 
1  35.70  2.17 1.77    5  31.85 
2  52.28  2.42 5.63    5  48.84 
3  38.18  0.78 2.74    5  38.47 
4  35.99  0.09 3.04    5  40.92 
5  21.19  2.21 0.50    5  26.08 
6  54.38 -2.64 3.63    5  47.98 
7  23.59  2.26 0.23    5  24.78 
8  32.27  0.45 1.34    5  32.69 
9  47.84  0.43 4.24    5  45.77 
10 38.87 -0.84 2.60    5  40.42 
                          
                          37.78 

ŷ(X3 = 5, X�3 = x�3,j)

ŷ(X3 = 5) =

X3 30 / 33



Constructing Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

3 4 5 6 7

32
36

40
44

       y    x1   x2   x3   yhat 
1  35.70  2.17 1.77    6  34.84 
2  52.28  2.42 5.63    6  51.84 
3  38.18  0.78 2.74    6  41.46 
4  35.99  0.09 3.04    6  43.91 
5  21.19  2.21 0.50    6  29.07 
6  54.38 -2.64 3.63    6  50.97 
7  23.59  2.26 0.23    6  27.77 
8  32.27  0.45 1.34    6  35.68 
9  47.84  0.43 4.24    6  48.77 
10 38.87 -0.84 2.60    6  43.42 
                          
                          40.77 

ŷ(X3 = 6, X�3 = x�3,j)

ŷ(X3 = 6) =

X3 30 / 33



Constructing Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

3 4 5 6 7

32
36

40
44

       y    x1   x2   x3   yhat 
1  35.70  2.17 1.77    7  37.84 
2  52.28  2.42 5.63    7  54.83 
3  38.18  0.78 2.74    7  44.45 
4  35.99  0.09 3.04    7  46.90 
5  21.19  2.21 0.50    7  32.07 
6  54.38 -2.64 3.63    7  53.96 
7  23.59  2.26 0.23    7  30.77 
8  32.27  0.45 1.34    7  38.67 
9  47.84  0.43 4.24    7  51.76 
10 38.87 -0.84 2.60    7  46.41 
                          
                          43.76 

ŷ(X3 = 7, X�3 = x�3,j)

ŷ(X3 = 7) =

X3 30 / 33



Partial Dependence Plots

Visually shows the effect of Xi on predictions after accounting for
other predictors

I Fix all sample data except for the data for Xi

I Replace all data for Xi with a small value, say x

I Get mean prediction ŷ

I Increase x by a small amount and repeat

I Plot all (x, ŷ) pairs

Note this is an estimate of the “true” partial dependency (since we
use sample data)
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Partial Dependence Plots for Aloe Abundance
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Further resources

http://www-bcf.usc.edu/∼gareth/ISL/

 1

Jam
es · W

itten · Hastie · Tibshirani

Springer Texts in Statistics

Gareth James · Daniela Witten · Trevor Hastie · Robert Tibshirani

An Introduction to Statistical Learning 
with Applications in R

Springer Texts in Statistics

An Introduction 
to Statistical 
Learning

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

Statistics

An Introduction to Statistical Learning

with Applications in R

An Introduction to Statistical Learning provides an accessible overview of the fi eld 
of statistical learning, an essential toolset for making sense of the vast and complex 
data sets that have emerged in fi elds ranging from biology to fi nance to marketing to 
astrophysics in the past twenty years. Th is book presents some of the most important 
modeling and prediction techniques, along with relevant applications. Topics include 
linear regression, classifi cation, resampling methods, shrinkage approaches, tree-based 
methods, support vector machines, clustering, and more. Color graphics and real-world 
examples are used to illustrate the methods presented. Since the goal of this textbook 
is to facilitate the use of these statistical learning techniques by practitioners in sci-
ence, industry, and other fi elds, each chapter contains a tutorial on implementing the 
analyses and methods presented in R, an extremely popular open source statistical 
soft ware platform.
Two of the authors co-wrote Th e Elements of Statistical Learning (Hastie, Tibshirani 
and Friedman, 2nd edition 2009), a popular reference book for statistics and machine 
learning researchers. An Introduction to Statistical Learning covers many of the same 
topics, but at a level accessible to a much broader audience. Th is book is targeted at 
statisticians and non-statisticians alike who wish to use cutting-edge statistical learn-
ing techniques to analyze their data. Th e text assumes only a previous course in linear 
regression and no knowledge of matrix algebra.
Gareth James is a professor of statistics at University of Southern California. He has 
published an extensive body of methodological work in the domain of statistical learn-
ing with particular emphasis on high-dimensional and functional data. Th e conceptual 
framework for this book grew out of his MBA elective courses in this area.  
Daniela Witten is an assistant professor of biostatistics at University of Washington. Her 
research focuses largely on high-dimensional statistical machine learning. She has 
contributed to the translation of statistical learning techniques to the fi eld of genomics, 
through collaborations and as a member of the Institute of Medicine committee that 
led to the report Evolution of Translational Omics.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and 
are co-authors of the successful textbook Elements of Statistical Learning. Hastie and 
Tibshirani developed generalized additive models and wrote a popular book of that 
title. Hastie co-developed much of the statistical modeling soft ware and environment 
in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso 
and is co-author of the very successful An Introduction to the Bootstrap.
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