SEEC Toolbox seminars Classification and Regression Trees

lan Durbach ian.durbach@uct.ac.za

SEEC - Statistics in Ecology, Environment and Conservation

- Trees are a type of supervised statistical learning method
- Very general: methods that relate a response variable y to a set of predictors X, with the aim of predicting the response for future observations
- Alternative to linear and logistic regression, neural networks, etc
- Regression trees for continuous response, classification for discrete

- ► We will look at counts of *Aloe dichotoma* (now *Aloidendron dichotomum*) collected by Jack et al. (2016)
- Extensive roadside survey returned 1,138 transects containing aloes
- Our goal is to predict the number of trees in a transect
- Predictors are latitude, longitude, MAP, MAT

> aloe <- read.csv("aloedichotoma.csv", header=TRUE)
> head(aloe)

ntrees	latitude	longitude	MAP	MAT
4	-21.14909	14.69328	111	21.7
129	-21.47578	15.04399	101	22
25	-21.47936	15.1299	130	21.6
245	-21.49967	15.04117	95	21.9
16	-21.18775	14.67602	108	21.6
	ntrees 4 129 25 245 16	ntreeslatitude4-21.14909129-21.4757825-21.47936245-21.4996716-21.18775	ntreeslatitudelongitude4-21.1490914.69328129-21.4757815.0439925-21.4793615.1299245-21.4996715.0411716-21.1877514.67602	ntreeslatitudelongitudeMAP4-21.1490914.69328111129-21.4757815.0439910125-21.4793615.1299130245-21.4996715.041179516-21.1877514.67602108

We begin by considering only latitude and longitude as potential predictors

Observed numbers of Aloe dichotoma

Longitude

7/33

8/33

9/33

Partitioned Feature Space

Predicted Log Abundance

Longitude

Need to choose **splitting criterion** (RSS)

Need to choose stopping criterion

- Used to predict a categorical response
- Similar to regression trees, except the predicted value in a region will now be the most commonly occurring class
- The class proportions in each terminal node give us an indication of the reliability of the prediction
- Suggested splitting criteria: Gini index, deviance (not % correct)

Trees versus Linear Models

- We could use either logistic regression or decision trees for classification
- Which is better depends on the problem

Model validation

A model can be made to fit sample data arbitrarily well

> You are interested in how well your model does on unseen data

Always do validation - always always always!

Model validation

Best practice

- 1. Divide your dataset in 3 parts: *training*, *validation* and *test* sets
- 2. Fit model on training data
- 3. Assess model on validation data
- 4. Choose model with the lowest *validation error*
- Assess selected model on test data for final model ⇐ this is your prediction error

Needs a lot of data

K-fold cross-validation

- 1. Divide data into *K* equal-size *folds*
- 2. Fit model model to all data excluding the *k*th fold
- 3. Assess performance using the *k*th fold
- 4. Repeat for all folds
- 5. Combine validation errors across folds

Most often k = 10. K = n, is *leave-one-out CV*

Example: 4-fold cross-validation for the linear model

	x	y
6	0.26	1.39
15	0.63	1.59
8	0.38	1.19
16	0.66	1.57
17	0.73	1.89
1	0.00	1.03
18	0.84	1.80
12	0.52	1.19
7	0.33	1.50
20	0.99	1.99
10	0.43	1.34
5	0.19	1.36
11	0.49	1.59
9	0.38	1.27
19	0.86	2.07
13	0.55	1.62
14	0.63	2.11
4	0.11	0.75
3	0.02	1.08
2	0.01	0.81

Randomise!

Example: 4-fold cross-validation for the linear model

 \hat{e}^2 \hat{y} x \boldsymbol{y} 0.26 1.39 1.24 0.023 6 15 0.63 1.59 1.68 0.008 8 0.38 1.19 1.38 0.036 - Test set 16 0.66 1.57 1.71 0.021 17 0.73 1.89 1.79 0.010 0.00 1.03 1 18 0.84 1.80 12 0.52 1.19 7 0.33 1.50 20 0.99 1.99 0.43 10 1.34 5 0.19 1.36 Training set 11 0.49 1.59 9 0.38 1.27 $\hat{y} = 0.932 + 1.184x$ 19 0.86 2.07 13 0.55 1.62 14 0.63 2.11 4 0.11 0.75 0.02 1.08 3 2 0.01 0.81

	x	y	\hat{y}	\hat{e}^2	
6	0.26	1.39	1.24	0.023	
15	0.63	1.59	1.68	0.008	
8	0.38	1.19	1.38	0.036	
16	0.66	1.57	1.71	0.021	
17	0.73	1.89	1.79	0.010	
1	0.00	1.03	0.87	0.026 J	
18	0.84	1.80	2.02	0.046	
12	0.52	1.19	1.58	0.149	• Test set
7	0.33	1.50	1.32	0.031	
20	0.99	1.99	2.22	0.053	
10	0.43	1.34			
5	0.19	1.36			The start was a set
11	0.49	1.59			Training set
9	0.38	1.27			$\hat{u} = 0.867 \pm 1.363r$
19	0.86	2.07			y = 0.001 + 1.000x
13	0.55	1.62			
14	0.63	2.11			
4	0.11	0.75			
3	0.02	1.08			
2	0.01	0.81			

	x	y	\hat{y}	\hat{e}^2	
6	0.26	1.39	1.24	0.023	
15	0.63	1.59	1.68	0.008	
8	0.38	1.19	1.38	0.036	
16	0.66	1.57	1.71	0.021	
17	0.73	1.89	1.79	0.010	
1	0.00	1.03	0.87	0.026	
18	0.84	1.80	2.02	0.046	Training got
12	0.52	1.19	1.58	0.149	framing set
7	0.33	1.50	1.32	0.031	$\hat{y} = 0.921 + 1.154x$
20	0.99	1.99	2.22	0.053	U U
10	0.43	1.34	1.42	0.006	
5	0.19	1.36	1.14	0.049	
11	0.49	1.59	1.48	0.011	- Test set
9	0.38	1.27	1.36	0.010	
19	0.86	2.07	1.92	0.023	
13	0.55	1.62			
14	0.63	2.11			
4	0.11	0.75			
3	0.02	1.08			
2	0.01	0.81			

	x	y	\hat{y}	\hat{e}^2	
6	0.26	1.39	1.24	0.023	
15	0.63	1.59	1.68	0.008	
8	0.38	1.19	1.38	0.036	
16	0.66	1.57	1.71	0.021	
17	0.73	1.89	1.79	0.010	
1	0.00	1.03	0.87	0.026	
18	0.84	1.80	2.02	0.046	Theining ast
12	0.52	1.19	1.58	0.149	- Iraining set
7	0.33	1.50	1.32	0.031	$\hat{y} = 1.012 + 0.985x$
20	0.99	1.99	2.22	0.053	-
10	0.43	1.34	1.42	0.006	
5	0.19	1.36	1.14	0.049	
11	0.49	1.59	1.48	0.011	
9	0.38	1.27	1.36	0.010	
19	0.86	2.07	1.92	0.023	
13	0.55	1.62	1.55	0.005	
14	0.63	2.11	1.63	0.232	
4	0.11	0.75	1.12	0.135	- Test set
3	0.02	1.08	1.03	0.002	
2	0.01	0.81	1.02	0.044	

	x	y	\hat{y}	\hat{e}^2
6	0.26	1.39	1.24	0.023
15	0.63	1.59	1.68	0.008
8	0.38	1.19	1.38	0.036
16	0.66	1.57	1.71	0.021
17	0.73	1.89	1.79	0.010
1	0.00	1.03	0.87	0.026
18	0.84	1.80	2.02	0.046
12	0.52	1.19	1.58	0.149
7	0.33	1.50	1.32	0.031
20	0.99	1.99	2.22	0.053
10	0.43	1.34	1.42	0.006
5	0.19	1.36	1.14	0.049
11	0.49	1.59	1.48	0.011
9	0.38	1.27	1.36	0.010
19	0.86	2.07	1.92	0.023
13	0.55	1.62	1.55	0.005
14	0.63	2.11	1.63	0.232
4	0.11	0.75	1.12	0.135
3	0.02	1.08	1.03	0.002
2	0.01	0.81	1.02	0.044

CV error
$$= \frac{1}{n} \sum_{i=1}^{n} \hat{e}_i^2$$

 $= 0.046$

Extensions

Bagging

Why does bagging help?

Cross-validation for bagging: Out-of-Bag Error

- ► A small tweak that *decorrelates* the trees produced by bagging
- Each time a split is considered, a random sample of m < p predictors are chosen as split candidates
- Bagging is a special case with m = p

- Bagging and RFs: each tree is grown independently of all other trees
- Boosting: grows trees sequentially using information from previously trees
- ▶ First, grow a regression tree with a small number of splits, d
- The residuals of this tree are then treated as the response variable and used to grow another tree
- And so on...

Boosting

Effects of predictor variables

- No inference with trees no significance testing
- Variable "importance": amount by which the splitting criterion improved
- Only a relative measure, and no how information

Visually shows the effect of X_i on predictions after accounting for other predictors

	У	x1	x2	x3
1	35.70	2.17	1.77	5.78
2	52.28	2.42	5.63	6.46
3	38.18	0.78	2.74	4.36
4	35.99	0.09	3.04	3.45
5	21.19	2.21	0.50	3.40
6	54.38	-2.64	3.63	6.81
7	23.59	2.26	0.23	4.52
8	32.27	0.45	1.34	5.62
9	47.84	0.43	4.24	5.61
10	38.87	-0.84	2.60	4.84

Construct a partial dependence plot for X_3

Predictive Model

Visually shows the effect of X_i on predictions after accounting for other predictors

- ▶ Fix all sample data except for the data for X_i
- Replace all data for X_i with a small value, say x
- Get mean prediction \hat{y}
- Increase x by a small amount and repeat
- Plot all (x, \hat{y}) pairs

Note this is an *estimate* of the "true" partial dependency (since we use sample data)

Partial Dependence Plots for Aloe Abundance

MAP

Further resources

$http://www-bcf.usc.edu/{\sim}gareth/ISL/$

- Death et al. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 81:3178-3192.
- Cutler et al. (2007). Random forests for classification in ecology. Ecology 88(11): 2783–2792.
- Elith et al. (2008). A working guide to boosted regression trees. Journal of Animal Ecology 77: 802-813.
- Jack, S. L., Hoffman, M. T., Rohde, R. F., & Durbach, I. (2016). Climate change sentinel or false prophet? The case of *Aloe dichotoma*. Diversity and Distributions, 22(7), 745–757.

iandurbach/trees-tutorial