SEEC Stats Toolbox

Want to broaden your stats knowledge? Unsure of what you can do

with your data? Still developing your proposal?

Join us for the monthly **SEEC Stats Toolbox** seminars where we introduce you to statistical methods that are useful for ecologists, environmental and conservation scientists.

Our next seminar:

5

Topic: Species occupancy models

Who: Res Altwegg

When: Thursday 31 May (1-2pm)

Where: John Day LT3

More details: www.seec.uct.ac.za

Occupancy

- ► Where a species occurs; which of a set of suitable patches are occupied; what determines where a species can live...
- ► (Metapopulation) ecology, conservation, red-listing

Occupancy: the proportion of sites occupied by a species

Occupancy: the proportion of sites occupied by a species

- ightharpoonup Occupancy: $\Psi = \frac{occupied}{total}$
- $ightharpoonup logit(\Psi) = f(covariates)$

Detection probability p < 1

'Naive approach':

- $\blacktriangleright \ \Psi \times p = \frac{occupied}{total}$

Repeated sampling

Assumptions:

- ► Closure (no colonisation or exctinction)
- No false detections

Survey histories:

- 1 = detected
- 0 = not detected
 - ► (1,1) 000
 - **►** (1,3) 100
 - **▶** (2,1) 101
 - **▶** (1,9) 000

Survey histories:

- 1 = detected
- 0 = not detected
 - **►** (1,1) 000
 - ► (1,3) 100
 - ► (2,1) 101
 - ► (1,9) 000

How many occupied cells have no detections?

A model for the detections

 $\Psi =$ probability of a cell to be occupied

p =probability of detecting the species given that the cell is occupied

K = number of visits to each site

 y_i = number of detections at site i

$$Pr(Y = y_i) = \Psi\binom{K}{y_i} p^{y_i} (1 - p)^{K - y_i}, y_i > 0$$

= $\Psi(1 - p)^K + (1 - \Psi), y_i = 0$

A hierarchical model

Guillera-Arroita 2017

 Ψ_i = probability that site i is occupied z_i = true occupancy at site i: 1 = occupied, 0 = not occupied p_{ij} = prob of detecting the species at site i during survey j y_{ij} = detection (1) or non-detection (0) at site i during survey j

 $z_i | \Psi_i \sim Bernoulli(\Psi_i)$

 $y_{ij}|z_i,p_{ij}\sim Bernoulli(z_ip_{ij})$

A hierarchical model

```
Ecological process: z_i | \Psi \sim Bernoulli(\Psi)
```

Observation process: $y_{ij}|z_i, p \sim Bernoulli(z_i p)$


```
SEEC - Statistics in Ecology, Environment and Conservation
```

```
model {
for (i in 1:nsites) {
z[i] ~ dbern(psi)
  p.eff[i] <- z[i] * p
  for (j in 1:nvisits) {
    y[i,j] ~ dbern(p.eff[i])
  } #i
ጉ #i
# Priors
psi ~ dunif(0, 1)
p ~ dunif(0, 1)
# Derived quantities
occ.fs \leftarrow sum(z[])
```

Preparing the data

$$\Psi = 0.5$$

$$p = 0.3$$

'Naive' occupancy:

$$\frac{126}{400} = 0.32$$

Preparing inputs for JAGS

```
\Psi = 0.5
p = 0.3
```

'Naive' occupancy: $\frac{126}{400} = 0.32$

```
library(jagsUI) # requires JAGS
occ.data <- list(y = y, nsites = nrow(y),
                  nvisits = ncol(y))
# Initial values
zst <- apply(y, 1, max)</pre>
inits <- function() list(z = zst)</pre>
```

```
# Parameters monitored
params <- c("psi", "p", "occ.fs")</pre>
```

```
# MCMC settings
nc <- 3; ni <- 5000; nb <- 2000
```


Fitting the model to the data

deviance 690.6184 35.3438 1.0016 1276

WARNING: MCMC can be dangerous!

> plot(out.occ)

Density of p

N = 1500 Bandwidth = 6.896

SEEC - Statistics in Ecology, Environment and Conservation

Bad example

If your chains look like this, don't trust the output!!

Covariate modelling

Want to know how occupancy and detection vary among sites, i, and visits, j.

$$logit(\Psi_i) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_U x_{iU}$$

$$logit(p_{ij}) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_U x_{iU} + \beta_{U+1} y_{ij1} + \ldots + \beta_{U+V} y_{ijV}$$

U site-level covariates: x_{i1}, \ldots, x_{iU}

V survey-specific covariates: y_{ij1}, \dots, y_{ijV}


```
logit(\Psi_i) = \beta_1^{\Psi} + \beta_2^{\Psi} long_i
logit(p_{ii}) = \beta_1^p + \beta_2^p long_i
```

```
model {
# Ecological model
for (i in 1:nsites) {
  z[i] ~ dbern(psi[i])
  # Observation model
  p.eff[i] \leftarrow z[i] * p[i]
  for (j in 1:nvisits) {
   y[i,j] ~ dbern(p.eff[i])
 } #j
} #i
# covariates
for (i in 1:nsites){
  logit(psi[i]) = beta.psi[1] + beta.psi[2]*long[i]
 logit(p[i]) = beta.p[1] + beta.p[2] * long[i]
# Priors
```



```
occ.data <- list(y = y, nsites = nrow(y),
            nvisits = ncol(y), long=long)
inits <- function() list(z = zst, beta.psi=runif(2,-3,3),
                               beta.p=runif(2,-3,3))
params <- c("beta.psi", "beta.p", "occ.fs")</pre>
out.occ.cov <- jags(occ.data,inits,params, "occ_cov.txt",</pre>
         n.chains=3, n.iter=5000, n.burn = 2000)
```


> out.occ.cov\$summary

	mean	sd	2.5%	97.5%	Rhat	n.eff
beta.psi[1]	-2.59	0.350	-3.31	-1.93	1	2674
beta.psi[2]	0.27	0.042	0.20	0.36	1	2755
beta.p[1]	2.07	0.320	1.46	2.72	1	1340
beta.p[2]	-0.20	0.023	-0.25	-0.16	1	1185
deviance	722.23	22.120	681.30	768.56	1	4385

Check convergence!

Estimated occupancy probability

$$logit(\Psi_i) = \beta_0 + \beta_1 long_i$$

Estimated occupancy probability

$$logit(\Psi_i) = eta_0 + eta_1 imes long_i$$
 $\Psi_i = rac{1}{1 + e^{-(eta_0 + eta_1 imes long_i)}}$

```
new.long <- 1:20
pr.s <- inv.logit(-2.59 + 0.27 * new.long)
> pr.s
[1] 0.089 0.114 0.145 0.182 0.226 0.277 0.334 0.397
[9] 0.464 0.532 0.599 0.662 0.720 0.772 0.816 0.853
[17] 0.884 0.909 0.930 0.945
```


Estimated occupancy probability

Southern bals ibis range in South Africa

www.flickr.com/photos/12457947@N07/4251701580

Second Southern African Bird Atlas Project

http://sabap2.adu.org.za/

Southern bals ibis

© Peter Rya

Southern bals ibis

www.flickr.com/photos/12457947@N07/4251701580

- ▶ Data: 30 June 2015 to 1 July 2017
- ▶ 3220 grid cells $5' \times 5'$
- 26'619 checklists (1 to 719 per cell)
- ➤ **Site-level covariates:** mean temp coldest month, mean temp warmest month, ratio actual to potential evapotranspiration, wet season intensity
- Survey-specific covariates: log(hours observed)

Preparing the data: long table format

> head(bi.m)

Pentad	Start_Date	lat	long	Total_hours	Spp	
2240_2820	2016-05-28	-22.70833	28.37500	4	0	
2240_2820	2015-10-10	-22.70833	28.37500	2	0	
2235_2825	2015-10-11	-22.62500	28.45833	2	0	
2235_2815	2015-09-25	-22.62500	28.29167	4	0	
2240 2815	2015-09-25	-22.70833	28, 29167	2	0	

After some data wrangling

```
> y[1:5,1:10]
                                   [,6] [,7] [,8] [,9] [,10]
      [,1] [,2]
                 [,3] [,4]
                             [,5]
[1,]
         0
              NA
                    NA
                          NA
                                NA
                                      NA
                                            NA
                                                  NA
                                                        NA
                                                               NA
[2,]
         0
              NA
                    NA
                          NA
                                NA
                                      NA
                                            NA
                                                  NA
                                                        NA
                                                               NA
[3,]
[4,]
                    NA
                          NA
                                NA
                                      NA
                                            NA
                                                  NA
                                                        NA
                                                               NA
[5,]
                    NA
                          NA
                                NA
                                      NA
                                            NA
                                                  NA
                                                        NA
                                                               NA
```

```
> dim(y)
[1] 3220 719
```


Survey-specific covariates

```
> lhours[1:5,1:10]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]
     0.69
             NA
                  NA
                        NA
                             NA
                                   NA
                                        NA
                                              NA
                                                   NA
                                                          NA
[2,]
     1.39
             NA
                  NA
                        NA
                             NA
                                   NA
                                        NA
                                              NA
                                                   NA
                                                          NA
     1.61 1.39 1.6
                      2.1
                            1.1 0.69
                                      1.8
                                            1.4 0.69
                                                         1.4
[4,] 0.69 1.39
                  NA
                        NA
                             NA
                                   NA
                                        NA
                                              NA
                                                   NA
                                                          NA
[5,] 1.61 0.69
                  NA
                        NA
                             NA
                                   NA
                                        NA
                                              NA
                                                   NA
                                                          NA
```

```
> dim(lhours)
[1] 3220 719
```


Site-specific covariates

> head(MTCO) [,1] [1,] 0.981870 [2,] 0.981870 [3,] 1.041489 [4,] 1.071299 [5,] 1.429016 [6,] 1.429016

- ► One value per grid cell
- Covariates scaled to $\bar{x} = 0, s = 1$

$$z_i | \Psi_i \sim Bernoulli(\Psi_i)$$

$$y_{ij}|z_i,p_{ij}\sim Bernoulli(z_ip_{ij})$$

$$logit(\Psi_i) = \\ \beta_1^{\Psi} + \beta_2^{\Psi} MTCO_i + \beta_3^{\Psi} MTWA_i + \beta_4^{\Psi} AET.PET_i + \beta_5^{\Psi} Wet.intensity_i$$

$$logit(p_{ij}) = \beta_1^p + \beta_2^p lhours_{ij}$$

New features:

- # visits varies among sites
- multiple covariates
- observation-level covariates

```
model {
for (i in 1:nsites) {
  z[i] ~ dbern(psi[i])
   for (j in 1:ncards[i]) {
    p.eff[i,j] <- z[i] * p[i,j]
    y[i,j] ~ dbern(p.eff[i,j])
} #i
# covariates
for (i in 1:nsites){
  logit(psi[i]) = beta.psi[1]
       + beta.psi[2] * MTCO[i]
       + beta.psi[3] * MTWA[i]
       + beta.psi[4] * AET.PET[i]
       + beta.psi[5] * Wet.Intensity[i]
  for (j in 1:ncards[i]){
    logit(p[i,j]) = beta.p[1]
```

+ beta.p[2] * lhours[i,j]

} #j #i

New features:

- # visits varies among sites
- multiple covariates
- observation-level covariates

```
# Priors
for (b in 1:5){
  beta.psi[b] ~ dnorm(0, 0.01)
}

for (b in 1:2){
  beta.p[b] ~ dnorm(0, 0.01)
}
}
```


Data:

- survey histories y
- site-level covariates
 - ► MTCO
 - ► MTWA
 - ► AET.PET
 - ► Wet.intensity
- observation-level covariates:
 Thours
- # sites: nsites
- # visits: ncards

Parameters:

- coefficients for site-level covariates: beta.psi
- coefficients for observation-level covariates: beta.p
- \rightarrow need priors
- \rightarrow need initial values

Unobserved true occupancy state: *z_i*

 \rightarrow need initial values

Fit model and check convergence

Southern bals ibis

© Peter Rya

Southern bals ibis

© Peter Ryar

Single-season occupancy models

- ► Repeated detection / non-detection data
- Estimate occupancy and detection process
- ► **Key assumptions:** closure, no false detections, surveys are independent, sites are independent
- Can be fitted using JAGS via R package 'jagsUI'
- ▶ Other software: R package 'unmarked', PRESENCE, MARK

Why go Bayesian?

- more flexible
- easy to add random effects
- ► spatial autocorrelation
- can use prior information

Key references

Single-season occupancy models:

- MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. A. Royle, and C. A. Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255.
- MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2017. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Academic Press.
- Guillera-Arroita, G. 2017. Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40:281295.

Occupancy models in BUGS:

- Kéry, M., and M. Schaub. 2012. Bayesian Population Analysis using WinBUGS: A hierarchical perspective. Academic Press.
- Kéry, M., and J. A. Royle. 2016. Applied Hierarchical Modeling in Ecology. Academic Press.

