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”GLMMs are surprisingly challenging to use even for statisticians ...... We
strongly recommend that researchers proceed with caution by making sure
they have a good understanding of the basics of linear and generalized
mixed models before taking the plunge into GLMMs”

Bolker et al (2008)
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Table 1. Data set for illustration

Variable Description

Site Study site
Type Method of seed dispersal
Species Type of Acacia species
Seedbank size (count) Response
Stand age Explanatory variable

Strydom M., Veldtman R., Ngwenya M.Z., Esler K.J. (2017). Invasive Australian
Acacia seed banks: Size and relationship with stem diameter in the presence of
gall-forming biological control agents. PLoS ONE, 12 (8)
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Introduction GLMs

Introduction

1.1 Why generalized linear models

Most of the data in ecology, environment and conservation studies is
non-normal; e.g. count data, binary data, proportions

Count data examples:
number of individuals of a certain species in an area, clutch sizes of
birds

Binary data examples:
presence-absence of a species in a locale, infection status of individuals
with regards to a certain disease

Proportional data examples:
sex ratios, infection rates, mortality rates within a group or area
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Introduction GLMs

To overcome non-normality of data and analyse these data with linear
models

Apply transformations
Use non parametric tests
Rely on the robustness of classical ANOVA

However GLMs are a more suitable tool for such type of analysis

To use GLMs all one has to do is

1 Specify distribution of your data

2 Specify link function

Link function:

The function that describes the relationship between the mean of the
response and a linear combination of the covariates
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Introduction GLMs

Table 2. Distributions and associated link functions for the various types
of data commonly encountered in ecology

Data Distribution Link

Count Poisson Log

Binary Bernoulli Logit

Proportions Binomial Logit

glm{stats} and glmer{lme4} - will fit these models for you
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Introduction GLMs

It may happen that your data may show more variation than what
would be expected under the distributions shown in Table 2 -
Overdispersion

In such situations one can use the quasi-Poisson or negative binomial
distribution to model count data instead of the Poisson distribution

Similarly one can use the quasi-Binomial distribution for proportions

For GLMs overdispersion can be tested for by applying the
dispersion.test{AER} function on a fitted model - values greater
than 7.5 indicate overdispersion
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Introduction Mixed models

1.2 Why mixed models

Most environmental and ecological studies are observational and
include

Natural blocking; species, sites

Repeated observation of the same subjects over time

Samples of observational units from a larger population

Want a way to model this variability (random variation)

Modeling random variation allows one to extrapolate results to
individuals and populations beyond the study sample; make inferences
about the general population

If random variation not accounted for all inferences are limited to
study sample

Therefore need to model this “random effect”

Mzabalazo Z. Ngwenya (SEEC-UCT) 9 / 26



Introduction Mixed models

Random effect:

Grouping variable for which we are trying to control for e.g. site, biome,
observation time

Random effects are formed from categorical variables whose levels are
sampled from a larger population

Interest is not on the effect of the random variable on the response.
Instead interest is in the variation exhibited by each level of the
random effects
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Introduction Mixed models

Fixed effect:

Factors whose levels are experimentally determined or in which were are
interested in determining the specific effects of each level

These are variables we expect to have an effect on the response.
Interest is on these effects: differences among levels/treatments and
interactions

Note:
It is common to have situations where strictly speaking a variable could be
classified as a fixed or random effect. Eventual assignment of variables will
thus depend on the context of the study, research questions to be
answered and/or experimental design employed.
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Introduction Mixed models

Variable Description

Site Study site

Type Method of seed dispersal

Species Type of Acacia species

Seedbank size (count) Response

Stand age Explanatory variable
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Introduction Mixed models

Types of random effects

Block random effects:
These are effects that apply equally - usually natural groupings e.g.
species, site

(1|site)

Nested random effects:
Appears in situations where we have multiple random effects that
follow some kind of hierarchy e.g. species within genus

(1|type/species) or (1|type) + (1|type:species)

Crossed random effects:
Arise when there are multiple random effects that affect our sample
units independently, e.g. time and block

(1|site) + (1|type)

Mzabalazo Z. Ngwenya (SEEC-UCT) 13 / 26



GLMMs

Generalized Linear Mixed Models

Combine generalized linear models and linear mixed models to form a very
powerful tool

To use one has to specify

1 Distribution of data

2 Link function

3 Structure of the random effects

2.1 Estimation of parameters

1 Fixed effect parameters - Effects of covariates

2 Random effects variance - Variation across groups
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GLMMs Estimation of parameters

Approaches to estimation

Maximum Likelihood (ML) and Restricted Maximum Likelihood:
glmmML{MASS}

Pseudo/penalized quasilikelihood (PQL):
glmmPQL{MASS}

Laplace approximation:
glmer{lme4}, glmmML{MASS}, glmmadmb{glmmADMB}

Gauss-Hermite quadrature (GHQ):
glmer{lme4}

Markov Chain Monte Carlo (MCMC):
glmer{lme4}, MCMCglmm{MCMCglmm}
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GLMMs Estimation of parameters

ML and REML:

ML tends to underestimate random effect standard deviations except in
very large data

REML is better at obtaining unbiased random effect standard
deviations

Slow and sometimes computationally infeasible when there are a large
number of random effects.

PQL:

Will yield biased parameter estimates of fixed effects if the random
effects are large. This is especially true for Binary data

Performs poorly for Poisson data when the mean number of counts per
treatment combination is less than 5

Poor performer for Binomial data where the expected number of
success and failure are both less than 5
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GLMMs Estimation of parameters

Laplace approximation

Better accuracy than PQL

Computes actual likelihood and hence allows for likelihood based
inference

GHQ

More accurate than Laplace

Slow and speed decreases further with increasing number of random
effects

Hence not feasible for analysis with more than 2 or 3 random factors
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GLMMs Estimation of parameters

MCMC

Gives comparable results to likelihood methods when data sets are
highly informative and a vague prior is used

Extends easily to multiple random effects - need large data sets to do
this though

MCMC involves difficult technical details making their correct and
effective use potentially difficult

Take home:

Laplace approximation with REML estimation will be best for most
problems.
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GLMMs Inference - Model selection and Hypothesis testing

2.2 Inference - Model selection and hypothesis testing

Inference includes

Inspecting parameter estimates and their confidence intervals

Testing (biological) hypothesis

Determining best model and evaluating goodness of fit of models

These processes and objectives are not mutually exclusive
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GLMMs Inference - Model selection and Hypothesis testing

Model selection:

Compare fits of candidate models to find best model. We seek to balance
goodness of fit and model complexity

Model selection can be implemented via one of two ways

1 Traditional null hypothesis testing approach

Likelihood Ratio Test - lrtest{lmtest}; anova{stats}

2 Information theoretic approach

Akaike Information Criterion - AIC{stats}; AICc{AICcmodavg}
(AICc for small samples; QAIC and quasi-AIC for overdispersed data)

Bayesian Information Criterion - BIC{stats}

Deviance Information Criterion - DIC{AICcmodavg}
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GLMMs Inference - Model selection and Hypothesis testing

2.2.1 Null hypothesis testing approach

Simple nested models are tested against more complex models

This approach can lead to suboptimal models - model selected as
“best” depends on the order of testing

Unreliable for small to moderate samples

LRT gives no indication for the relative support of competing models

In LRTs multiple pairwise comparisons are performed which increases
possibility of type-I-error
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GLMMs Inference - Model selection and Hypothesis testing

2.2.2 Information theoretic approach

All IT methods have a term which penalizes complex models - hence
the do well in balancing goodness of fit and model complexity

Allow for simultaneous comparisons of multiple competing models
which are nested or non-nested

Competing models can be ranked which is useful where ere there is
more than on plausible hypothesis

Provide a basis for averaging parameter estimates and predictions
across various models which has the following benefits

1 Provide more accurate estimates of parameters and predictions

2 Enable construction of confidence intervals that correctly account for
model uncertainty
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GLMMs Multimodal inference

2.3 Multimodal Inference

Well supported in R - AICcmodavg and MuIn; (we use the later
package here)

Model averaging for inference involves 3 main steps

1 Generating model set:

Use domain knowledge to form models which represent hypothesis of
interest/possible scenarios - model .set

2 Identifying set of models with good support

top.models<-get.model(model.set, cumsum(weight) ≤ 0.95)

The above command will form the 95% confidence set of model.

3 Model averaging

avg.model <- model.avg(top.models)
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GLMMs Multimodal inference

Confidence set for the best model

Method: raw sum of model probabilities

95% confidence set:

K AICc Delta_AICc AICcWt

mod 3 10 4111.21 0.00 0.52

mod 2 11 4112.83 1.63 0.23

mod 1 13 4113.48 2.28 0.17

mod 8 12 4114.86 3.65 0.08

Model probabilities sum to 1

Once you have obtained averaged model you can then inspect the
model in the usual manner; summary(), confint()

Similarly prediction can be made in the usual manner using the
predict() function
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GLMMs Checking assumptions

2.4 Checking assumptions

To check for overdispersion

dispersion glmer{blemco}

values greater than 1.4 indicate overdispersion

Other diagnostics

Plots of the residuals like in linear model are the most prevalent
(graphical) diagnostic tool

Pearson and deviance residuals are commonly used; it is advised that
one should stick with deviance residuals
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