SEEC Stats Toolbox

Species distribution modelling II: using expert range maps and other spatial information to supplement biased occurrence data

SEEC - Statistics in Ecology, Environment and Conservation

Setting the scene

What is a species distribution model?

Franklin (2009). Mapping species distributions. Cambridge University Press

Biased occurrence data

Botts et al. (2011) Biodiv Cons 20

Biased occurrence data

Occupancy

Occupancy = $\psi \ge p$ ψ is the probability a site is occupied p is the probability of observing a species

SDMs usually model the probability a location contains a presence $(p \neq 1)$

SDMs tend to overpredict

Dispersal limitations Invasions Equilibrium with the environment

Incorporating other useful spatial information

Expert range maps

Dispersal info

Native or "other" range info

The approach

The approach

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2016) 25, 1022–1036

Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information

Cory Merow¹*, Jenica M. Allen², Matthew Aiello-Lammens^{3,4} and John A. Silander, Jr⁵

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2017) 26, 243–258

Integrating occurrence data and expert maps for improved species range predictions

Cory Merow^{1,2*}, Adam M. Wilson^{1,3} and Walter Jetz^{1,4}

General approach - Minxent

Just a generalisation of Maxent

General approach - Minxent

Just a generalisation of Maxent

General approach - Minxent

1) Build an offset (Maxent model using prior spatial information)

- a) Nuisance offset (factor out of the prediction)
- b) Informative offset (include in the prediction)
- 2) Build a normal Maxent SDM
- 3) Build Minxent SDM (by factoring offset in or out)
- 4) Compare 3) and 4) (optional)

Example 1: Accounting for sampling bias

App1_Sampling_Bias.r in Merow et al. (2016)

Accounting for sampling bias

Approach used for a long time – Target Group Sampling (TGS)

Niamir et al. (2016) Glob Ecol Biogeog 25

Step-by-step sampling bias

Step 1: Get species occs and ID target group samples

Celastrus orbiculatus

Other invasive species' occurrences

Step-by-step sampling bias

Step 1: Get species occs and ID target group samples

Celastrus orbiculatus

Other invasive species' occurrences

Step 2: Get predictors of sampling bias

Road density

Population density

Step 3: Build a sampling bias model

Step 4: Build a normal Maxent model for your species

Step 5: Build Maxent model with an offset (your sampling bias model as a bias grid)

Example 2: Using expert range maps

App5_Expert_Maps.r in Merow *et al*. (2016) Merow et al. (2017) bossMaps R package

Expert knowledge vs messy data

Roberts' Birds

SABAP2

Step-by-step expert maps

Step 1: Get species occurrences and an expert map

Step 2: Assign probabilities to areas inside and outside of expert range map (expert prior)

Step 3: Build a normal Maxent model for your species

Step 4: Multiply normal Maxent model by expert prior

Extra steps!

1) Assigning the probability values inside and outside the expert map

2) Sharpen or relax the expert map boundary

1) Assigning expert map probabilities

- Higher values inside expert map $(P_{in}) =$ higher certainty
- Can use omission rate (prop. of observed presences outside the expert map)
- Should ideally use independent data for this

2) Expert map boundary transition "shape"

- Simplest = step function
- Logistic curve that can be parameterized
 - Decay parameter (r): determines steepness

Not all combinations of P_{in} and r are possible

Feasible parameter combinations Dots Indicate combinations that achieve the desired probability inside Colors indicate the difference between desired and achieved probability inside 1.00 0.75 Required Desired Probability Inside the Range Buffer (km) - 10 50 100 150 ΔPin 0 -20 -40 -60 0.25 -Decav Decay 0.1 10.0 Decay Rate (log axis)

Summary

- Occurrence data usually biased
- SDMs overpredict
- Using offsets can help to address these problems by incorporating other sources of spatial info
- Other applications

