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"everything is related to everything else, but near things are more related
than distant things.”

Tobler's first law of geography
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1.1 Spatial Interpolation Problem

@ Predict the value of a physical process at an unobserved location xg

using n observations z = [z(x1),...,z(x,)] " obtained at n locations
X1, ...,X, within the study area D.
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The dimensions over which the process Z(-)operates is commonly d = 2 but may also be d = 1ord =3
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@ General approach to interpolation involves expressing a prediction of
the unknown value z(xg) as a weighted average of the
neighbouring observations;

LA detailed review of interpolation methods and categories is presented in Lee and
Heap (2014).
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n(xo)

2(x0) = ) Aiz(xy)
i=1

where:
n(xp) is the number of points in a search neighbourhood around the
prediction point.

)\; is the weight associated with the i observation z(x;)
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@ General approach to interpolation involves expressing a prediction of
the unknown value z(xg) as a weighted average of the
neighbouring observations;

n(xo)

2(x0) = ) Aiz(xy)
i=1

where:
n(xp) is the number of points in a search neighbourhood around the
prediction point.

)\; is the weight associated with the i observation z(x;)

@ The are two broad classes of interpolation methods.!

LA detailed review of interpolation methods and categories is presented in Lee and
Heap (2014).
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1.2 Deterministic methods

@ Use mathematical functions used to predict unknown values.

Examples:
- Global and local polynomials

- Inverse distance weighting
- Splines
@ No strict assumptions about the variability of a process are made.

@ Arbitrary or empirical model parameters used.
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@ Prediction accuracy of model determined via use cross-validation to
obtain an estimate the Root Mean Square Prediction Error (RMSPE);

1< .
RMSPE = — ;{Z(x,’) — 2 (xi)}
1=
where z(x;) is the observed value at x; and 2(_,-)(x,-) is the predicted
value obtained by fitting over all locations other than x;.

@ The RMSPE measures the overall accuracy of the predictions
(average prediction error).
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1.3 Stochastic methods

@ Use both mathematical and statistical techniques to predict values at
all locations within D.

Examples:
- Machine learning based; SVM, RF, NN

- Bayesian-based models; Bayesian Maximum Entropy
- Geostatistical; kriging
@ Strict assumptions made about the physical process

Z()={Z(x) :x € D c RY}.

@ Model parameters estimated objectively following probability theory.
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@ For stochastic methods the accuracy of predictions can not only be
judged by use of the RMSPE but may also be gauged using the Mean
Squared Prediction Error (MSPE)

B{[z(x0)— 2(x0)]2} = Var{z(xo)}+Var{2(xo)} —2-Cov{z(xo), 2(x0)}

@ The MSPE provides a measure of the prediction error of
each prediction Z(xg).

@ This allows one to not only create a prediction surface but also create
a surface of prediction errors.

@ Can also calculate confidence intervals for predictions.
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Other categorizations of interpolation methods

o Exact vs Approximate:
In exact interpolation methods the predicted values match exactly the
observed values at the sample points, x;, i = 1,...,n, that is
2(x;) = z(x;). In approximate interpolation measured and predicted
values do not have to coincide.

@ Convex vs Non-convex:
In convex interpolation all predicted values 2(xg) lie within the range
of the sample values z = [z(x1), ..., 2(x,)]". In non-convex
interpolation some predictions may be below or above the range of
sampled values.

@ Local vs Global:
Global interpolation methods are those methods that use the
complete data set in making a prediction at an unobserved locale xg.
Local methods use a subset of points around each prediction xg to
make a prediction at that point.
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2.1 Inverse Distance Weighting

@ Exact and convex interpolation method.

@ Global method, but in practise neighbourhoods are defined around
each prediction point to speed up computation on large datasets.

@ The weights are a simple function of the distance between individual
locations x;, i = 1,..., n and the prediction point xg, usually

1/||x; — xo|| such that
P
1
N=|—
[Ixi = xol|

where p is some integer.
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@ The higher the value of p the less importance will be put on distant
points.

@ Inverse squared distance, which is p = 2, is widely used.

@ A more objective way of determining p is cross-validation; i.e. trying
different values of p and see which one gives you the smallest RMSPE.

@ Predictions sensitive to sample location xi,...,x, and the presence of
outliers.

@ Very suitable for interpolating surfaces of phenomenon that can
change quickly over short spatial scales.
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3.1 Splines

@ Splines are piecewise polynomial functions
@ Local, non-convex and exact.

@ Most widely used splines are thin-plate splines and the regularized
spline with tension and smoothing, the latter gives one more control
over the nature of the fitted surface.

@ For regularized spline with tension and smoothing predictions are
obtained as

2(X0) = a; + Z w; - R(V,')
i=1

where aj is a constant and R(Vv;) is the radial basis function. 2

2Hengl (2007) gives details of the most common implmentation of the regularized

spline with tension.
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@ The coefficients a; and w; are obtained by solving the following
system of equations;

where 9y /9; is a positive weighting factor representing the smoothing
parameter at each prediction point xg.

@ The tension parameter ¢ controls the distance over which points
influence each other. The smoothing 1 /v; controls the vertical
deviation of the surface from the points.
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@ Smoothing and tension parameters have to be determined by user.
Can use cross-validation to determine the best values for these
parameters.

@ For Regularized spline: The higher the weight, the smoother the
surface, weights between 0 and 5 are recommended.

For tension splines the higher the weight, the coarser the surface and
the more predicted values conform to the range of sample data.
Weight values must be greater than or equal to zero.

@ Works best for interpolating gently varying surfaces.
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4.1 Kriging model

@ Non-convex interpolator that can be exact or inexact.

@ Based on the concept that spatial variables can be considered as
partly deterministic and partly stochastic

Z=p+68 &~(0,V(0)

where p = E{Z} is a deterministic mean and ¢ is stochastic
component which represents spatial variation.

@ The deterministic trend p is commonly modelled as a function of the
observation locations xi, ..., X, by polynomial functions f(-) and
unknown parameters By such that u = F3.
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@ Under the kriging model § is as a zero mean process with
variance-covariance matrix V(@) parameterized by g parameters

[01,....04).

@ 6 can be further decomposed into two components;

0=mn+e€

@ The first component is a structured random process and the second is
noise.
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@ The g parameters 6 = [61,...,04] of the variance-covariance matrix
correspond to some aspect of the correlation structure of Z(-);

2

61 = 7% variance of random noise process (nugget)

0 = o2: variance of the structured stochastic process (partial sill)

03 = ¢: the maximum distance over which any two points have an effect on
each other (range)

04 = K: a parameter that describes the smoothness of the process.

Mzabalazo Z. Ngwenya (SEEC-UCT) 18 /34



@ The g parameters 6 = [61,...,04] of the variance-covariance matrix
correspond to some aspect of the correlation structure of Z(-);
61 = 72: variance of random noise process (nugget)
0 = o2: variance of the structured stochastic process (partial sill)

03 = ¢: the maximum distance over which any two points have an effect on
each other (range)

04 = K: a parameter that describes the smoothness of the process.

@ These parameters correspond to what is termed the semivariogram
~(h) of the process.

Mzabalazo Z. Ngwenya (SEEC-UCT) 18 /34



@ The g parameters 6 = [61,...,04] of the variance-covariance matrix
correspond to some aspect of the correlation structure of Z(-);

2

61 = 7% variance of random noise process (nugget)

0 = o2: variance of the structured stochastic process (partial sill)

03 = ¢: the maximum distance over which any two points have an effect on
each other (range)

04 = K: a parameter that describes the smoothness of the process.

@ These parameters correspond to what is termed the semivariogram
~(h) of the process.

@ The semivariogram of ~y(h) is commonly modelled through parametric
functions of the distance between points h.
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Some common parametric semivariogram models:

Model ~(h)
Exponential 724 o2{1 — =3 /)
Gaussian 724+ 03{1 — e~¥/9")

eIz

Matérn ™ +af {1 - 2~+F('\) (%) NK" ( ‘ ) }
Cauchy ™+ o {l - {1 + (%) 2} ﬁ}
Circular 2+ 03{1 - %[MCCUS (%) - (g) 1= (751)2 ] } forfi = 0.

0, otherwise

| e 2 2 ) 3k K3 -
Spherical T+ Uo{ﬁ — 55 for 0 < h < ¢,

2 Ug. for h > ¢

Cardinal-sine 24 03{1 — (%) sin (%)}

(Wave)

Mzabalazo Z. Ngwenya (SEEC 19 /34




An example of the shape of semivariogram models:

v(h)

exponential
spherical
gaussian

Models have the same range ¢ = 5, partial sill 0> = 1 and nugget 72 = 0.
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@ In kriging the weights in

n(xo)

2(x0) = Y Niz(x))
i=1
are determined by minimizing the prediction error

E{[z(x0) — 2(x0)]*}.
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@ The main assumption of kriging models is stationarity of the process.
Various levels of stationarity may be assumed;

- Strict stationarity :
The mean and variance of Z(-) are constant throughout the domain D.

- Second order stationarity :
The mean is the same everywhere and for each pair of variables the
covariance exists and depends only on the distance between points h.

- Intrinsic stationarity:
the mean is not the same everywhere however the covariance exists and
depends only on the distance between points h.

@ The stationarity assumption made affects the form of the mean.
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@ F3 can be modified to give a variety of models.

Type Assumption Mean model
Universal kriging | non-stationary, unknown mean Fa
Ordinary kriging constant, unknown mean 15

Simple kriging constant, known mean (3 15
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4.2 Model fitting

4.2.1 Least squares approach:

@ The g parameters of @ are commonly obtained via least squares
methods.3

@ This approach is based on fitting theocratical semivariogram models
to experimental semivariograms curves in a two step approach.
@ Estimate the (empirical) semivariogram 4 = [§(h1),...,5(hm)] "

3Cressie (1993) gives a detailed of account of the implementation different of least

squares algorithms to solve this problem.
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4.2 Model fitting

4.2.1 Least squares approach:

@ The g parameters of @ are commonly obtained via least squares
methods.3

@ This approach is based on fitting theocratical semivariogram models
to experimental semivariograms curves in a two step approach.
@ Estimate the (empirical) semivariogram 4 = [§(h1),...,5(hm)] "
@ Fit a theocratical model to experimental semivariogram by minimizing
the sum of squares.

3Cressie (1993) gives a detailed of account of the implementation different of least

squares algorithms to solve this problem.
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Step 1:

Calculate the semivariance between all points to obtain a semivariogram
cloud. Use an appropriate estimator to determine obtain estimates of ~y(h)
at each of these lags; 5(h1),...,5(hm)
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Step 2:

Fit a theocratical semivariogram model to experimental semivariogram by

minimizing the sum of squares.
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@ This is however a subjective method.

@ Subjectively arises in the process of constructing the empirical
semivariogram [Y(h1),...,5(hm)]".

@ No formal way of determining optimal number of lags M.

e No formal way to determine the number of points N(h;j) to use in
calculating each 4(hj).
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4.2.2 Likelihood estimation approach

@ A more objective method of estimating 6 is to use Likelihood based
estimation methods.*

@ ML estimation of the semivariogram parameters involves maximizing
the negative log-likelihood

1(6;8,Z) = —% [nnf2r} + {|V(0)]} + (Z ~ FB)TV(0) *(Z - FB)|.
o REML estimation of 8 involves
1(6;KZ) = — %[(n — K — 1)In{2r} + In{|FTV(6)"'F| + In{|V(6)|
+In{|FTF| + (2~ FB)TV(6) (Z - FA)}].

where the matrix of contrasts K is chosen so that E{KZ} = 0.

*Diggle and Riberio (2007) give a good account of this approach
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@ Can compute goodness-of-fit measures such as AIC and BIC allowing
one to compare the fits of competing models.

AIC=—2-n{l}+2-p
BIC = —2-In{L} + p - log{n}

where L is the value of the maximized log likelihood, p is the number of
parameters in the model and n is the number of observations.

With information criterion based methods such the AIC and BIC you can compare nested and/or non-nested models.
y
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4.3 Estimating the prediction error at a point

@ As noted earlier, major advantage of stochastic interpolation methods
is that they not only provide a method of judging overall prediction
accuracy but also the accuracy of individual predictions 2(xg).

@ In kriging this prediction error is called the kriging variance.

@ There exist several estimators of the kriging variance.®

>Thiart, C. Ngwenya, MZ and Haines, LM (2014) give details on the different

estimators and their sources of bias. Performance of the estimators is also discussed.
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@ Analytic estimators;
- Traditional (plug-in) estimator
- Kacker-Harville estimator
- Prasad-Rao estimator

@ Bootstrap estimators;

- Unconditional Bootstrap estimator

- Conditional Bootstrap estimator
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@ Although the traditional plug in estimator is widely used it is known
to underestimate the prediction error.

@ The Prasad-Rao estimator is to be preferred.

@ REML estimation of the parameters leads to least biased estimates.

Mzabalazo Z. Ngwenya (SEEC-UCT) 32/34



Bibliography

& W & &

Cressie, N. A. C. (1993)
Statistics for Spatial Data (revised edition), John Wiley and Sons, New York.

Diggle, P.J. and Riberio, P.J. (2007)
Model-based geostatistics. Springer, New York.

Goovaerts, P.(1997)
Geostatistics for Natural Resources Evaluation. Oxford University Press, Oxford.

Hengl, T.(2007)
A Practical Guide to Geostatistical Mapping of Environmental Variables. European
Commision, ltaly.

Li, J. and Heap A.D. (2014).
Spatial interpolation methods applied in environmental sciences: A review.
Environmental Modelling and Software, 53, 173-189.

Thiart, C Ngwenya, MZ and Haines, LM (2014).

Investigating'optimal’kriging variance estimation using an analytic and a bootstrap
approach.

Journal of the Southern African Institute of Mining and Metallurgy, 114, 613-619.

Mzabalazo Z. Ngwenya (SEEC-UCT) 33/34



@ Use kriging for interpolation; (assumptions are as restrictive as they
appear).

e Fit models using likelihood methods; REML is to be preferred here.

@ Estimate the kriging variance using the Prasad-Rao estimator.
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