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Preamble

@ The classical methods of point pattern analysis largely developed outside the
field of statistics.

@ These methods were developed for relatively small data sets and rest heavily
on the assumption of stationarity of the point process though stationarity is
often an unreasonable assumption.

@ The classical approach also relies heavily on non-parametric summary
statistics for making inferences.

@ Developments in computing coupled with advances in computational
statistics have moved spatial point analysis away from non-parametric
methods and assumptions of stationarity to flexible likelihood based methods
where the assumption of stationarity can be relaxed.

@ This modern approach to spatial point pattern analysis allows for more
statistical rigor.
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1.1 Statistical formulation

Point process

An unordered countable set of locations s = {s1,...,s,} in a defined
d-dimensional study region W € RY at which certain events have been
recorded.

Assumptions:

@ The point process S extends throughout R? but is only observed
inside W.

@ W the sampling window is fixed and known.
@ Number of points is random.

@ Locations of points is random.
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1.2 Types of point patterns

@ Simple point pattern - have locations of events only
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Figure 1: Locations of Japanese black pine saplings in a square sampling
region in a natural forest.
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@ Marked point pattern - have location and magnitude of events
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Figure 2: Locations of Longleaf pine trees shown using circles proportional to

tree diameters.
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e Multi-type point pattern - consist of locations of different types of
events
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Figure 3: Location of the nests of two ant species.
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1.3 Common scientific questions

@ s the point pattern random?
@ What is the spatial density of points?

© What are the inter-point relationships?

In order to answer these questions one needs to characterize the process
which necessitates the determination of the first-order and second-order
intensities of the process.
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2.1 First-order intensity

o First order intensity, A(s) relates to the intensity of the process in
space, that is, the spatial intensity.

@ The intensity maybe either homogenous over W or inhomogeneous
@ \(s) can be either estimated via kernel or likelihood methods.

@ Kernel estimates of are frequently useful when no information of the
mechanisms driving the spatial intensity exist.

@ Likelihood methods for the estimation of A(s) are often used in
situations where some knowledge on the form of the trend or
mechanisms driving the process exist.
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Kernel estimation of \(s):

o In kernel estimation of intensity the Gaussian kernel exp(||s||?/2) is
predominantly used.

@ If the point process is assumed to be stationery with homogenous
intensity a fixed bandwidth is chosen.

@ If the intensity is inhomogeneous the kernel estimator may be made
adaptive by using various bandwidth values.
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Likelihood estimation of \(s):

@ If information about the process exists a parametric point process
models is first fitted giving A(s) = exp(F/3), this is the likelihood
approach.

@ The following classes of point process models are usually assumed
depending on what is known /suspected of the process;

Second-order | Point process model spatstat function

property

CSR Poisson process ppm(data ~ 1)

Inhibition Gibbs ppm(data ~ trend , interaction =" ")

Aggregation Inhomogeneous Poisson ppm(data ~ trend)
Cox/Inhomogenous cluster | kppm(data ~ trend, clusters =" " )
Gibbs ppm(data ~ trend, interaction =" ")
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Interaction specification:

@ For Gibbs models modeling inhibition, the inter-point interaction
should be models using the area-interaction model or the Geyer
saturation model.

@ For Gibbs models modeling inhibition all other interaction models
specify a clustering process (see ?ppm)

@ For Cox cluster processes the clusters argument should be one of
"Thomas" (default), "Cauchy", "VarGamma", "LGCP"

Mzabalazo Z. Ngwenya (SEEC-UCT) 12/33



2.2 Second-order intensity

@ Second-order describes inter-point relationships i.e spatial
randomness, regularity and aggregation.

@ Second order properties of a point process can be inferred using one
of three approaches
© Quadrant methods - (highly subjective)

@ Fitted models - (if likelihood approach to model fitting is taken
parameters can be estimated objectively following probability theory)

© Calculation of theoretical envelopes of summary statistics using
simulation (classical approach)
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@ The summary statistics that are commonly used with the simulation
approach are

© Ripley's K-function, K(r)!;

For typical point of the process K(r) computes the expected number of
other points of the process within a distance r of that point.

@ Pair-correlation function, g(r)?;

For any set of points separated by distance r values of

g(r) = 1 indicate Complete Spatial Randomness (CSR),

g(r) > 1 indicates clustering of points at that distance and values of
g(r) < 1 indicate inhibition or regularity
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@ These functions are usually computed for various values of r which
are then plotted.

@ The analogs of the K(r) and g(r) functions for inhomogeneous
processes are respectively

- The L-function a.k.a inhomogeneous K-function; Kinhom(), Lest()
- The inhomogeneous pair correlation function; pcfinhom()

@ To perform inference using these summary statistics simulation
envelopes® corresponding to Poisson Process i.e. CSR are computed
for that statistic.

The statistic is also then computed for the observed data which is the
compared to the simulation envelope.

3envelope ()
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3. A simple example of point pattern analysis in R

@ For statistical rigor the following approach is taken in the analysis and
modeling process;

© Firstly non-parametric methods and the simulation based approach to
inference are used for exploratory data analysis (EDA).

© Using the insight gained from the EDA parametric point process
models are then fitted and the best model is selected, evaluated and
then subsequently used for inference.
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3.1 Exploratory data analysis

@ We use the non-parametric methods for investigating the first-order
intensity

@ Preliminary inference on the second-order characteristics of the
process are drawn using summary statistics in conjunction with

simulation.
Characteristic R code
first-order intensity density.ppp(nztrees)

second-order intensity | plot(envelope(nztrees, fun = Kinhom, correction ="best”,
global = TRUE), main = NULL)
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3.1.1 Non-parametric estimation of the first order intensity
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Figure 4: Fixed Kernel estimate of spatial intensity.
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3.1.2 Non-parametric statistic for second-order intensity
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Figure 5: K inhomogeneous function and associated quantities
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@ It appears as if the point process is inhomogeneous

@ Though inhomogeneous it appears that we have a Poisson point
process i.e. an inhomogeneous Poisson point process.
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3.2 Modeling and inference

3.2.1 Model fitting

@ Using the insights gathered from the EDA with the non-parametric
methods we are now able to specify and fit various parametric models.

@ Four models were fitted
- Homogenous Poisson model - (the null model)
- Inhomogeneous Poisson (I.P) model with linear trend (L.T.)
- Inhomogeneous Poisson (I.P) model with quadratic trend (Q.T.)
- Cox model with Neyman-Scott clustering mechanism specified by a
Cauchy kernel; linear trend (L.T.)

Model | Description | R code

Poisson ppm(nztrees ~ 1)

I.P- LT ppm(nztrees ~ x+vy)

I.P. - Q.T. | ppm(nztrees ~ polynom(x,y,2))

Cox - L.T. kppm(nztrees ~ x+vy, cluster = “Cauchy")

W N = O
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Model 1:
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Figure 6: Spatial intensity estimate for fitted inhomogeneous Poisson model with
linear trend.
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Model 2:

0008 0.012

0.004

Figure 7: Spatial intensity estimate for fitted inhomogeneous Poisson model with
quadratic trend.
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Model 3:
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Figure 8: Cox model with Neyman-Scott clustering mechanism specified by a
Cauchy kernel; linear trend.
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3.2.2 Model evaluation and diagnostics

AIC(fitted.model)

Model | Description AIC

0 Poisson 1056.354
1 Inhomogeneous Poisson - linear trend 1059.137
2 Inhomogeneous Poisson - quadratic trend | 1056.238
3 Cox - linear trend 2455.198
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Model 2:
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diagnose.ppm(poisson.mdl.2, which = "smooth")

Smoothed raw residuals

Mzabalazo Z. Ngwenya (SEEC-UCT)

Figure 9: Residuals from the best fitting model.

m]

=

DA

27/33



Fitted surface Smoothed raw residuals

0.012

0.008

0.004

diagnose.ppm(poisson.mdl.2, which = "smooth")
Model diagnostics (raw residuals)

Diagnostics available:

smoothed residual field

range of smoothed field = [-0.002166, 0.001624]
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3.2.3 Inference

@ We use the best fitting model to make inference

> print(poisson.mdl.2)
Nonstationary Poisson process

Log intensity: “x +y + I(x"2) + I(x *x y) + I(y"2)

Fitted trend coefficients:

(Intercept) X v I(x"2)
-4.2948849770 -0.0222001974 -0.0089257067 0.0001007236
I(x *y) I(y~2)

0.0001955263 -0.0000881984
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@ From the fitted model we can infer that

- The point process is a Nonstationary Poisson process

- The (estimated) first order intensity (spatial trend/ systematic
component of the point process) is

A(s) = exp(FB3) = exp(—4.295—0.0222x—0.009y-+0.0001%+0.0001xxy —0.00008y?)
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@ Lets look at the scenario where there is clustering; we interpret the
Inhomogeneous cluster process model, the Cox model

> print(cox.mdl)

Inhomogeneous cluster point process model
Fitted to point pattern dataset ‘nztrees’
Fitted by maximum Palm likelihood

rmax = 23.75

weight function: Indicator(distance <= 11.875)

Log intensity: "x +y

Fitted trend coefficients:
(Intercept) X y
-5.277292606 0.002590988 -0.001221149

Cluster model: Cauchy process
Fitted cluster parameters:
kappa scale

215.026320 7.291613
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@ We can obtain an estimate of the first-order intensity as before;
A(s) = exp(FB) = exp(—5.277 + 0.003x — 0.001y)

@ We can also obtain parameters on the clustering process, the
stochastic component of the point process, these are x = 215.026
and r =7.292.

e This means the clustering process has an intensity of 215.026
e The scale parameter, r, indicates the average radius of each of the
clusters

@ Some models have the additional parameter v. This provides an
estimate of the average number of offspring for each parent point.
(therefore v + 1 will give you average number of points for each
cluster)
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